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A Quantum of Light Shed on Classical Potentials and Fields* 

Cynthia Kolb Whitney 
Tufts University Electro Optics Technology Center 
Medford, MA 02155, U.S.A. 

The quantum concept of light as photon, elaborated with possibly non-zero rest mass, is used to 
re-examine the classical problem of retarded electromagnetic potentials. A conflict with the classi-
cal Liénard-Wiechert formulation is revealed. An alternative formulation is recommended.   

                                                                 
* Dedicated to Ruth E. Kolb, 1909-1996, for her encouragement of independent thinking. 

1. Introduction 

The classical theory of retarded electromagnetic po-
tentials is usually attributed to Liénard (1898) and 
Wiechert (1900), who developed a mathematical model 
based on Euclidean geometry and general signal retar-
dation analogous to that occurring with light propaga-
tion. The Liénard-Wiechert model represents the amal-
gamation of dual concepts: the discrete particle (the 
source) and the continuous wave (the signal). The du-
ality of the concepts was evident at the time, in competi-
tion between the Lorentz electron theory and the Max-
well field theory for electricity (see O’Rahilly 1938), 
and it remains evident today in occasional as-yet unre-
solved conflicts between relativity theory and quantum 
theory. 

Was the wave-particle duality really resolved ade-
quately within the Liénard-Wiechert model? It seemed 
so in terms of turn-of-the-century Lorentz electrons and 
Maxwell waves. But if still so today, the model would 
have to be consistent with both relativity theory and 
quantum theory.  

The Liénard-Wiechert model predates Einstein’s 
special relativity theory (SRT, 1905 and 1907), but has 
since been incorporated into that theory by means of 
various mathematical arguments which are not the 
main topic of the present paper.  

The corresponding question of consistency between 
the Liénard-Wiechert model and quantum theory 
seems not to have been addressed. That is the topic of 
the present paper. If the Liénard-Wiechert model is 
indeed consistent with quantum mechanics, then a new 
argument based on modern light quanta ought to re-
produce it.  

The present paper argues that in fact such consis-
tency is not achieved. We are therefore forced to recon-
sider, and possibly alter, both the classical arguments 
and the potentials that result from them. In addition, we 
need to review the currently believed consistency with 
SRT. 

2. The Classical Formulation 

The classical Liénard-Wiechert potentials are 
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where Φ and 
r
A  are, respectively, scalar and vector po-

tentials, Q is source charge, 
r
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source-to-observer spatial vector, and “ret” means source 
parameters are evaluated at retarded time, i.e. causally 
connected time, i.e. t t R cret ret= − / . 

Interesting features of the Liénard-Wiechert poten-
tials include the following: 

 
1. Source coordinates are defined implicitly. That is, 

tret  is a function of Rret , and Rret  is a function of 
tret . This feature may serve to warn the cautious 
user that constructing an analysis from the point of 
view of the observer may be tricky. 

2.  The scalar potential Φ is not a symmetric function 

of the source speed v, and the vector potential 
r
A  is 

not an antisymmetric function of v. But they would 

be if the four-vector Φ,
r
Ae j  were obtained by Lor-

entz transformation of the four-vector Φ0 0,
r

e j  from 

the coordinate frame of the source. This conflict 
should warn the user to take care. 

 
The classical Liénard-Wiechert potentials are never-

theless incorporated into SRT. The first step is rewrit-
ing them as 
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Then the numerator γ β1,
r

e j
ret

 is recognized as the 

unit-normalized source-velocity four-vector Vret
µ .  As-
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suming uniform motion, the subscript “ret” has no ef-
fect on V µ . The denominator γκR ret  is recognized as 

the frame-invariant scalar inner product V R
retµ

µ , 

where the four-vector R R Rret
ret

µ = ,
r

e j  is the zero-length 

source-to-observer coordinate difference. Thus 
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A noteworthy feature of this formulation is that the 

inner product V R
retµ

µ  in the denominator is not a 

frame-invariant scalar number, but rather a frame-
invariant scalar function that varies with some appropri-
ate time argument. We shall return to this point later. 

3. The Quantum Approach 

If we were to address the problem of retarded poten-
tials within the context of quantum photons instead of 
classical waves, we would change many things. For 
example, instead of infinite wave extent, we would have 
a localized blip, and instead of phase velocity, we would 
have centroid velocity. In place of an energy density 

E B2 2 2+c h  defined by electric field 
r
E  and magnetic 

field 
r
B , we would have a total energy hν  defined by 

Planck’s constant h and frequency ν, and in place of 

momentum density 
r r
E B c×  defined by fields, we would 

have total momentum h cν  defined by frequency. 
Indeed, we would not have fields at all; we would have 
only photons, real and virtual, to mediate forces. 

It is clear that the quantum photons are very differ-
ent from classical electromagnetic fields. Polarization is 
a good example: standard quantum electrodynamics 
admits not two but four polarization states (see Feyn-
man, 1988). It is also clear that quantum photons are 
very similar to quantum particles. Interference is a good 
example: both kinds of entities experience interference. 

Photons would become even more particle-like if we 
were to consider possibly non-zero photon rest mass. 
This concept traces back to deBroglie and extends for-
ward to cutting-edge experimental physics (see Pecker 

1991, Evans and Vigier 1994 and 1995). It involves a 
two-part system for light propagation, with a propagat-
ing pilot wave and a wave-guided photon particle. The 
wave can propagate at c, but the particle could carry 
non-zero mass and, if so, could not travel at c.  

This concept would add something really decisive to 
direct the analysis. Note that if photons have mass, then 
the population of photons shed from a source has a center 
of mass. Center of mass was always a useful concept in 
classical mechanics, and it could well be an equally 
useful concept in a quantum-based review of retarded 
electromagnetic potentials. 

In the observer’s coordinate frame, this center of 
mass moves as time elapses. But in the source’s coordi-
nate frame, it is permanently positioned right at the 
source. This suggests that the analysis should definitely 
begin in the source coordinate frame. 

4. In the Source Coordinate Frame 

In the source coordinate frame, let time and space 
coordinates be t0  and x y z0 0 0, , . Let the observer move 
at some uniform velocity 

r
v  past the source. Let t0 0=  

be the time of closest approach between source and 
observer. Let a photon leave the source at t temit0 0=  and 
arrive at the observer at t tabs0 0= . The distance the 
photon travels is  
 R c t tabs emit0 0 0= −a f  (4a) 

In this same interval, the observer travels distance 
 v t t Rabs emit0 0 0− =a f β  (4b) 

Without meaningful loss of generality, we can make the 
direction of 

r
v  be along the x0  axis, and we can make 

the observer path lie in the x y0 0,  plane with y0  non-
negative. The situation in the source coordinate frame 
is then essentially like that illustrated by Fig. 1a. 

In the case illustrated, β is 1/2. The observer is lo-
cated at some positive x0  when the photon is emitted, 
and progresses to a larger x0  by the time the photon is 
absorbed. Negative initial x0  is also possible, and so is 
negative final x0 . The latter condition would corre-
spond to negative tabs0 . 

As tabs0  evolves, R0  
evolves with it, first decreasing 
as tabs0  passes trough negative 
values to zero, and then in-
creasing as tabs0  progresses 
through positive values. It is 
possible to track the entire 
history of R0  as a function of 
tabs0  with v as a parameter. 
The R0  is a symmetric func-
tion of both tabs0  and v, and it 
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Figure 1a . Situation in source coordinate frame 

x

 

R 

observer

trajectory

R

source

stationary

ββ

at y
0

ret ret

 
Figure 1b. Situation in observer coordinate frame. 
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has asymptotes with 

slopes +v. A plot of 
R tabs0 0( )  and its 
asymptotes looks 
like Fig. 2a. 

In this illustra-
tion, and the several 
similar ones to fol-
low, the units of 
time are seconds, 
and the units of distance are light seconds. The separa-
tion at closest approach is three such distance units. 
Smaller separation at closest approach would produce a 
curve closer to its asymptotes, and zero separation 
would produce a “curve” coincident with the asymp-
totes. Higher relative velocity would produce steeper 
asymptotes.  

It is also possible to track R0  as a function of temit0 , 
again with v as a parameter. The R0  is then not a sym-
metric function of either temit0  or v. Its asymptotes have 

slopes − +v 1 βa f  and + −v 1 βa f . Figure 2b illustrates 

R temit0 0a f  and its asymptotes.  

Observe that every numerical value that occurs in 
R tabs0 0a f  (Fig. 2a) also occurs in R temit0 0a f  (Fig. 2b), 

only for a different value of time argument. If we were 
to suppress the distinguishing subscripts “abs0” and 
“emit0” on the time arguments, then the function de-
picted on Fig. 2b would appear to anticipate the func-
tion depicted on Fig. 2a. The magnitude of the time 
shift would be t tabs emit0 0− , the time required for light 
propagation over the distance R0 . This observation 
foreshadows a similar but more troubling one later on. 

5. In the Observer Coordinate Frame 

Clearly, R0  provides the denominator for the scalar 
potential Φ0  in the source coordinate frame, and it is R0 

that the denominator γκR ret  in (2) or V R
retµ

µ  in (3) 

promises to recover while using only variables evalu-
ated in the observer coordinate frame.  

Let us consider plots of R0  analogous to Figs. 2a and 

2b, but constructed in the observer coordi-
nate frame. For this exercise, we require new time vari-
ables tabs  and temit  defined in the observer coordinate 
frame. These have to be determined by Lorentz trans-
formations from the source coordinate frame.  

First we have 

 t t vx cabs abs abs= −γ 0 0
2/c h  (5a) 

with x vtabs abs0 0= , so that 

 t t v t c
t

abs abs abs

abs

= −
≡

γ
γ

0
2

0
2

0

/
/

c h  (5b) 

So when transformed to the observer coordinate frame, 
Figure 2a just shrinks in width by a factor of γ. The 
essential symmetry of the plots does not change. The 
only change is that the slopes of the asymptotes change 
from ±v  to ±γv . Figure 3a shows the new plots. 

Similarly we have 

 t t vx cemit emit emit= −γ 0 0
2/c h  (6a) 

with xemit0 0= , so that 
 t temit emit= γ 0  (6b) 
So when transformed to the observer coordinate frame, 
Figure 2b just stretches in width by a factor of γ. It re-
mains asymmetrical. The slopes of its asymptotes 
change from − +v / 1 βa f  and + −v / 1 βa f  to 
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Figure 3b shows the new plots. 

6. The Classi-
cal Expression 

Now consider 
the classical 
γκR ret  denomina-

tor for the potentials 
in (2). To construct 
this, we must begin 
with a situation 
display similar to 

 
Figure 2a. Evolution of R
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Fig. 1a, but in the observer coordinate frame. Figure 1b 
provides this. The source is located at some negative x 
when the photon is emitted, and progresses to a more 
negative x by the time the photon is absorbed.  

As temit  evolves, Rret  evolves with it, first decreasing 
as temit  passes through negative values to zero, and then 
increasing as temit  progresses through positive values. 

Except for the names of the variables, a plot of R tret emita f  

is identical to R tabs0 a f , Fig. 2a. (Just to complete this 

description, note that the corresponding plot of 
R tret absa f  is a mirror image of R temit0 a f , Fig. 2b.) 

Since R tret emita f  is symmetric in temit  and v, it fol-

lows that γκR ret  is not symmetric in temit  or v. The 

asymmetry of γκR tret emita f  is similar to that of 

R temit0 a f . Furthermore, γκR tret emita f  has asymptotes 

 − − = −
−
+

v vγ β
β
β

1
1
1

a f  (8a) 

and 

 + + = +
+
−

v vγ β
β
β

1
1
1

a f  (8b) 

which are identical to those of R temit0 a f , given by (7a) 

and (7b). Indeed, upon careful examination there is a 
perfect match between the entire function 
γκR tret emita f  and the function R temit0 a f , Fig. 3b. 

In practice γκR ret  is evaluated by an observer 

whose clock reads only tabs , not temit . The correspond-

ing plot of γκR tret absa f  matches R tabs0 a f , Fig. 3a. 

Viewed in this way, γκR ret  has symmetry in v and tabs . 

7. The Required Symmetry 

Suppose that Coulomb-Ampere forces are really me-
diated by virtual photons, and that the potentials are but 
a computation device to predict the effects of the pho-
tons. That is, suppose the physical reality consists of 
radial photon paths rather than spherical wavefronts of 
potential. Then there then has to be some one-to-one 
relationship between the lateral dispersion of photons 
and the denominator of potentials. 

Suppose further that the photons could have non-
zero rest mass. Clearly the center of mass of all the pho-
tons shed at temit  has to lie at the retarded source posi-
tion. So every photon emitted toward the observer has 
to be matched by another photon emitted in the oppo-
site direction, toward an imaginary observer whose 
situation is opposite to that of the real observer; i.e. 
whose temit  has the opposite sign. This means that for 

given Rret , the lateral dispersion of photons has to be 
symmetric in temit . 

So the denominator for potentials also needs sym-
metry in temit . So the symmetry requirement for the 
denominator of potentials reduces to symmetry in v and 
temit .  

Unfortunately, symmetry in v and temit  is a 
combination simply not provided by the classical 
γκR ret , no matter how we look at it. So in short, 

γκR ret  does not properly recover the needed R0  as 

promised.  In order to produce the R0  with the needed symme-
try in v and temit , rather than symmetry in v and tabs , 

we have to evaluate γκR ret  with temit  replacing tabs . 

This means that the classical function γκR ret  anticipates 

the sought R0  function, and the time shift is just 
t tabs emit− , the time required to propagate light over the 
distance Rret . 

Thus the potentials seem to require denominator 
γκR

retret
. Except for the names of the variables, a plot 

of γκR
retret

 versus temit  is identical to R tabs0 a f , Fig. 3a, 

and so certainly has the required symmetry in v and 
temit . 

But γκR
retret

 is certainly a very peculiar looking ex-

pression. Fortunately, it can be replaced with something 
much more acceptable-looking by applying simple 
trigonometry. Figure 4 shows R0  and γκR ret  as hy-

potenuses of right triangles. The perpendicular sides are 
as needed to satisfy the definition of R0  as γκR

retret
. 

Because coordinates perpendicular to motion are 
unaffected by coordinate-frame change, we have 
 R Rret0⊥ ⊥=  (9a) 
Because t temit emit= γ 0 , we have the second retardation, 
βRret  in the observer frame, given in the source frame 
as 
 β γβR Rret reta f0 =  (9b) 

It then follows that 
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 R Rret0/ / / /= γ  (9c) 
and 

 R R Rret ret0
2 2 2= +⊥ γ / /  (9d) 

The validity of this solution can be confirmed by apply-
ing the Pythagorean theorem to the larger right triangle 
that has γκR ret  as its hypotenuse.  

It is this R0  that belongs in the potentials. In place of 
(2) or (3), we need 

 
Φ, , /

/

r r
A Q R

QV R
ret

ret

e j e j=

=

γ β
µ

1 0

0

 (10) 

with R0  evaluated by (9d). We must abandon the usual 

assumption that the needed R0  is the classical γκR ret  

as in (2), or its relativistic equivalent V R
retµ

µ  as in (3). 

8. Discussion 

How could all this be so? How could there be an er-
ror embedded in the accepted body of knowledge that 
constitutes SRT? There appear to be several contribut-
ing factors making this possible, and they are discussed 
below. 

First of all, the standard Liénard-Wiechert results are 
very nearly correct. For uniform source motion, the 
error is only a time shift, and in many practical scenar-
ios would be undetectable. 

Secondly, the Liénard-Wiechert results are in fact 
entirely pre-relativistic. Einstein used them (1922), but 
he did not in fact re-derive them within the context of 
his own theory. We cannot now guess if he would ever 
have done that. Indeed, the anonymous referee for this 
paper remarked that Einstein’s thinking was more along 
the lines of Section 7. 

For the benefit of the present author and the audi-
ence that first saw some of the plots presented here, J.P. 
Vigier recounted his own knowledge of the history of 
privately expressed doubts about the Liénard-Wiechert 
results. The history traces through Louis deBroglie and 
indeed back to Einstein. But nobody articulated the 
doubts in print. 

The fact that Einstein used the Liénard-Wiechert re-
sults conferred on them unwarranted authority. With 
the end results assumed not subject to question, modern 
authors have generally just retro-fitted modern mathe-
matical methods onto them, without seizing the oppor-
tunity to delve into questions that the modern methods 
might have exposed.  

For example, the modern concept of invariant scalar 
inner product underlies the formulation (3). But the 
fact that γκR ret  is equivalent to the inner product 

V R
retµ

µ , means only that it is an invariant; it does not 

mean that it is the invariant that corresponds to the cor-

rect time argument; i.e., the correct proper time of the 
correct entity in the problem. The slipperiness of the 

construct V R
retµ

µ  has been demonstrated. For exam-

ple, Whitney (1989) shows that the operations of retar-
dation and Lorentz transformation can lead to ambigu-
ity by failing to commute. 

Another of the modern approaches uses generalized 
functions: the Dirac delta and the Heaviside step. [See, 
for example, Jackson (1975), Sections 12.11 and 14.1.] 
The problem with the generalized functions is that they 
lack the mathematical property of uniform conver-
gence, and as a result they can produce apparently 
pathological behaviors. Worst among these is failure in 
operator commutation: as the generalized functions are 
used in field theory, the operations of differentiation, 
integration, and generalized-function limit do not 
commute (Whitney 1988). This means the evaluation 
of fields in terms of generalized functions is not unique. 

The Liénard-Wiechert formulae for fields would 
have revealed a problem had they been exhaustively 
tested. Whitney (1991) offers a scenario specially con-
trived to reveal problems. A charge traverses a circular 
orbit centered in the x-y plane, and an observer sits 
somewhere on the z axis. The field formulae are easy to 
evaluate because κ ret = 1  and R Rret = , a constant. In 
this scenario, the velocity-determined part of the E field 
has a γ 2  in the denominator, and so tends to zero as β 
tends to unity. The acceleration-dependent part of the E 
field contains both radiative and non-radiative parts. 
Only the radiative part has any component along the z 
axis. The only way to produce any E field that is Cou-
lomb-like in its direction is to conscript this radiative E, 

pretend that the 
r r
E B×  radiation does not have a prior 

claim on it, and time-average it. Such conscription is, of 
course, not legitimate. But without it, the total Coulomb 

field comes out −Q R/ 2  times 
r
β ret ; i.e. a vector lying 

entirely in the x-y plane and time-averaging to zero. 
This means the rapidly circulating charge looses its 
Coulomb attraction for this observer. Such a prediction 
is not believable. 

The standard Liénard-Wiechert potentials have 
stood unchallenged for a very long time. But they do 
lead to unacceptable problems, and a new formulation 
definitely seems needed. The present paper offers a new 
formulation that is consistent with the concept of pho-
tons that are similar to quantum particles with non-zero 
rest mass. It should be noted, however, that photon rest 
mass is not specified here, and is not even actually nec-
essary; the new theory holds in the limit as photon mass 
approaches zero. 

The proposed new formulation does have at least 
one feature somewhat reminiscent of the classical for-
mulation; namely, a characteristic “shrinkage” phe-
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nomenon. Standard theory exhibits such a phenome-
non in regard to the pattern of E field lines. In the 
source frame, the E field lines are straight and uni-
formly spaced in angle. Standard theory says that in the 
observer frame, the whole straight-line pattern just 
shrinks by γ in the direction of source motion. [See 
Jackson (1975), Fig. 11.9] Somewhat similarly, the 
present theory says that, in the observer coordinate 
frame, the photon propagation path just shrinks by γ in 
the direction of source motion. 
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