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To check the standard model we have used classic (m,z), (θ,z) tests and the combined (m,θ) test, as well as a new 

dθ/dt–z test of the quasar expansion dependence on z. As distinct from the usual sampling methods of testing the 

theory, we use global regression dependencies m zb g , θ zb g , and m θb g  of the observed values determining corre-

sponding statistical patterns. 

Based on measured values of (m,θ) and z for approximately 70,000 galaxies and 4,000 quasars it is shown that 

the dependence of redshift on distance to galaxies and quasars is quadratic R R zo=  within all redshift intervals 

investigated 10–3 ≤ z ≤ 5. The same dependence is obtained with the quasar expansion test. The quadratic depend-

ence does not confirm the relation resulting from the theory of relativistic cosmology. It is found that the mean values of 

galaxy and quasar luminosity and dispersion are equal, and independent of z. Nor do the mean galaxy size, mean 

surface brightness and dispersions in size and brightness depend on redshift within the investigated interval z ≤ 0.2–

0.5. 

The distribution laws of these values are strictly lognormal. These experimental results lead to the conclusion that the 

Metagalaxy is a stationary nonexpanding system of galaxies with unobservable origin and bounds within the redshift 

interval investigated, which corresponds to a time interval of about 5 billion years. It is shown that the quadratic red-

shift-distance dependence corresponds to a gravitational redshift. However, to explain the shift observed at a given Ro, 

matter density must be two to three orders greater than visible matter. If all the mass corresponds to visible mass, then 

the Metagalaxy’s horizon is 40-50 thousand Mpc, which makes it possible to explain the microwave background 

radiation as the optical radiation of stars in the Metagalaxy in a distance interval up to 40,000 Mpc. In this case, 

the redshift is produced in the process of wave propagation in space, though the mechanism producing it is still un-

known. 
  

Is the Majority Right? 

For majority opinion to change on the correctness of the hot big 
bang cosmology, it is clear that one or more of the arguments 
given above [the redshift-distance relation, the microwave back-
ground radiation, the abundance  of the light isotopes D, 3He, 
4He, and 7Li] must be seen to fail. To most cosmologists, this 
appears, at present, to be very unlikely. However, if a change 
does occur, it will probably come from one of three directions: 

a. A demonstration that the redshifts are not (all) Doppler 
shifts associated with the expansion of the universe. 

b. A demonstration that there is another plausible mechanism 
which could be responsible for the MBR, probably related to 
the idea that it does not have a perfect blackbody spectrum 
and/or that it could not have been coupled to the matter at an 
earlier epoch. 

c. Revised abundance determinations for the light isotopes 
which lead to the conclusion that they could not have been 
made in early nucleosynthesis. 

(Burbidge 1989, p.988) 

1. Introduction 

Nearly half a century ago it was proposed to test the cosmologi-
cal theory by comparing its predictions with the observable depend-

ence on the redshift z for galaxies of apparent luminosity E(z)  and 

angular size θ(z). In the big-bang cosmology these theoretical 
relations are (Lang 1974) 
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Here R z qo o,b g  is the galaxy's metric distance at the time of 

observation, which follows from the solution of the Einstein gravi-

tational equation, R c Ho o o= −1  is the universe radius, Ho is the 

Hubble constant, L(z) is the spectral power density of galaxy 

radiation, and l(z) is the galaxy linear size. The function (z + 1)2 

determines the radiation decay along its path due to the redshift and 

(z + 1)–1 takes into account a smaller size of the universe at the 

moment of radiation in the past. The value of qo characterizes the 
spatial deceleration, and has practically no affect on the character 

of the metric distance dependence on z [R(z) = Ro Ψ(z,qo)]. The 
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apparent luminosity is usually expressed in magnitudes and θ(z) in 
logarithmic values. The corresponding theoretical expressions are 
equal to  
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Here M(z) – 5 = –2.5 log L(z), where M(z)  is the absolute 

galaxy magnitude. Expressions (2) are greatly simplified for con-

crete models defined by the value of qo. So, for the closed model 

qo = 1 and for qo = 0 the distance function 

R(z) = Ro z/(z + 1), and according to (2)  
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A decisive way to test the theory is the experimental de termina-

tion of the distance function R(z) = Ro Ψ(z, qo) by measuring 

values for m(z) and/or θ(z). For this it is necessary either to know 

evolution functions L(z) and l(z) or to eliminate their influence. 

The first is, in principal, impossible due to the large scatter in galaxy 
luminosity values and size values. Owing to this fact, in the fifties 
the “standard candle” and “standard rod” methods were proposed; 

these consisted in using m(z) and θ(z) data for a special sample of 
galaxies having different redshifts z but strictly the same absolute 

magnitude M(z)  or the same linear size l(z). It only remained to 

find a way to implement the idea under conditions where galaxy 
magnitudes and sizes can differ by an order or more from the mean 

value at the same redshift z. To perform m(z) tests under these 
conditions, Sandage (1961) proposed to use the brightest cluster 
galaxies which have different z. It was supposed that in rich clusters 

all the brightest galaxies have the same luminosities M(z)  and, 
hence, give the solution of the problem. 

As a standard size for the θ(z) test it was proposed to use the 
distance between centers of double radio galaxies and radio quasars. It 
was supposed that this distance is more stable than the size of nor-
mal galaxies. Here we summarize the results of these long-standing 
investigations.  

II. Tests using standard source sampling 

The m(z) test results are given in the Hubble diagram in Figure 

1, which plots apparent magnitudes m(z) of the brightest galaxies 

whose absolute magnitudes M(z)  are presumed the same, i.e. 
M(z) = const. The values of m(z) are in a good agreement with 

the theoretical curve having the slope dm/d logz = 5 both for 
closed and open models of the universe. As can be seen, to discrimi-

nate the models experimentally it is necessary to measure m(z) at z 

> 1. For this purpose, quasars having redshifts up to z = 4–5 were 
used. The result is given in Figure 2, from which it is seen that the 

position of quasars on the m(z)-diagram does not agree with either 
the theory or the notion of a “standard” ensemble of galaxies. This 
discrepancy in the standard cosmology theory is explained by the 
high luminosity of quasars, which exceeds galaxy luminosities by two 
to three orders (5–8 magnitudes), making them inappropriate for 

the “standard candle” test. As a result, quasars are not used in m(z) 
tests at all. Thus, although it was impossible to discriminate between 

models (closed or open), it was thought that the m(z) test with so-

called “uniform galaxies” showed a R(z) = Ro z/(z + 1) depend-
ence, which gives the observable slope of the diagram 

dm/d logz = 5. The case with the θ(z) test suggested by Hoyle 
turned out to be quite different. The Hoyle diagram (Figure 3) gives 

the experimental log θ"(z) dependence obtained by Kapahi (1987) 
for 225 double radio galaxies and 250 double quasars, as compared 

with the theoretical one for qo = 1 and qo = ½. From Figure 3 it is 

seen that the θ(z) test is in sharp contrast to the theory. However, 
it was soon explained by the suggested evolution of the galaxy sizes 

at a rate of l(z) = lo/(z + 1)2–3. This explanation gave rise to a 

large number of studies using this test to examine the peculiarities of 
galaxy size evolution. Therefore, the methods proposed to test the 
theory led to conflicting conclusions, and the problem of verifying 

the theory by astrophysical observations of m(z) and θ(z) has been 
in a deadlock, which has been detailed in excellent reviews by Bur-
bidge (1989) and Baryshev (1992). 

The reason for failure lies in a dynamic approach to the solution 

of a typically statistical problem in which the measured m(z) and 

log θ€(z) values are random, with a considerable dispersion. More-
over, the concept of sampling galaxies with a standard luminosity 
has no theoret ical or experimental foundation, and it leaves much 
room for subjective sampling that cannot be eliminated.  

The use of double radio galaxies and quasars for a θ(z) test is 
less appropriate since there is a stronger evolution of luminosities 

 
Figure 2. The same as Figure 1, plus the data for sampling of quasars (crosses). 

 
Figure 1. Hubble diagram for sampling of the brightest cluster galaxies compared to theoreti-

cal curve m ,z (solid line) at qo = 1 and qo = ½. 

 
Figure 3. Theoretical curve of the apparent angular size (solid line) compared with measure-
ments of galaxies (empty circles) and quasars (solid circles). 
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and sizes in the radio waveband than in the optical, and, hence, their 
stronger dependence on z. 

III. Statistical approach to experimental 
testing (Troitskij 1994, 1995) 

As measurements show, the observable parameters of galaxies 

m(z) and log θ (z) are random values taking the definite field in 

space m, z, log θ. According to (1), (2) the randomness of these 
values follows from the randomness of the absolute luminosity 

M(z)  and linear sizes l(z) of the galaxies. Thus, a regular part of 

m(z) and log ′′θ zb g  dependences on R(z)  is hidden by random 

functions M(z)  and l(z). They can be treated as a noise with a 

nonzero mean value which is superimposed on the desired depend-

ence R(z) . To reveal R(z)  from the measurements of m(z) and 

log θ (z) it is necessary to eliminate noise components M(z)  and 

log l(z). For this purpose there exists the regression analysis or 

averaging method widely used in physics. We must therefore find 

experimentally the regression dependences m zb g and logθ zb g , 

which are the averaged random functions of m(z) and log θ (z). 
The theoretical expressions to be measured take the following form  
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where a bar over a random function defines the regression function. 

As a result of averaging, the functions M(z)  and l(z) are trans-

formed into regular functions M zb g and l zb g . They determine 

the mean dependence of random parameters on z or, in a sense, the 
mean evolution, since coordinate z is proportional to time in the 

past. It is apparent that averaging does not obviate the need to 

know these functions for the determination of R(z) . In this case, 
two equations (4) relate three regular functions: two regression 

functions log L , l og l  and one dynamic function R(z) , the 

experimental determination of which solves the problem of an 
agreement between theory and reality. In fact, this has brought us 
back to the standard candle and standard rod methods. The differ-
ence is that we now use a “statistical standard candle” and a “statist i-

cal standard size”. This, however, makes it possible to find R(z)  

invoking additional information to define regular functions M zb g  

and log l za f  from the start. To anticipate, we may say that the 

problem is solved due to a demonstration that M zb g  and 

log l za f  are constant values independent of z! 

To test the theory by the statistical method proposed we must 
use as large and as global a dataset as possible, checked for statistical 
uniformity, absence of observation sampling influence, Malmquist 
effect, and the like. 

IV. Initial observational data: Hubble and 
Hoyle global m(z) and log θθ“(z) diagrams 

For initial data we have used the most complete and up-to-date 
catalogue of galaxies, the Principal Galaxy Catalogue 1988 (PGC) 
(Paturel et al. 1989) containing 73,197 galaxies. We added to it 
nearly 3 thousand entries from more recent surveys (Sandage & 
Perelmutter 1991; Karachentsev & Kopylov 1990). To secure the 
maximum uniformity of the date we have used galaxies of only one 
morphological type, viz., spirals of all subtypes, which amount to 
nearly 80 per cent of all the galaxies given in the PGC catalogue of 

galaxies. We have also used m(z) data for all known quasars pub-
lished in catalogues to date (Hewitt & Burbidge 1987; Veron-Cetti & 
Veron 1989; Hewlett et al. 1991). 

 
Figure 5. Hoyle diagram for 12,600 spiral galaxies. Solid line is the regression function. 
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Figure 4 is the global Hubble m(z) diagram in V-band for all 
12,600 spirals and 4,000 quasars. A similar diagram by Hoyle for 

l og ′′θ zb g  is shown in Figure 5 for galaxies only, since correspond-

ing QSO data is lacking. According to Figure 4 the random field of 

m(z) data for quasars smoothly extends the random field of m(z) 

data for galaxies, making a uniform global field of m(z) parameters, 
a single global statistical dependence. This field of random values is 
fairly sharply bounded from both sides of strong and weak luminosi-
ties. Both boundaries are formed by equal parallel lines which restrict 

the band of m(z) values by a width of 6m for all z. Within limits, we 
can regard the global dependence as a random process, since z is also 

the coordinate of time. To make sure that the random field of m(z) 
values is not a result of conscious limitations during observations or 
a sampling process, we need only define its statistical characteristics. 

Figure 6 gives the result of calculations of m distribution for a given 

z, i.e. p(m/z), for the field of Figure 4 at log z1 = –2 ± 0.15, 

log z2 = –1.5 ± 0.15 for galaxies and at log z3 = 0 ± 0.15, 

log z4 = 0.4 ± 0.15 for quasars. It also gives the corresponding 
Gaussian comparison curves, demonstrating that the distribution of 

random m(z) at each z is sufficiently Gaussian, i.e. symmetrical. 
This unequivocally testifies to the absence of noticeable observa-

tional limitations of m(z) both from below and above the m(z) 
band in Figure 4. Very important is the equal dispersion 

σ(m) = 1.1m independent of z both for galaxies and quasars, which 
we have noted before (Troitskij et al. 1992; 1994). Hence, the 

boundedness of the m(z) field from both strong and weak luminosi-
ties is defined by the nature of the random field itself. As is known, 
the total width of the noise band for a Gaussian distribution of a 

random value is ± 3σ; i.e. for m(z) it is 6.5m, as seen in Figure 4. 
Inside this band there are 99.7 per cent of all existing objects. The 

unified dependence m(z) for galaxies and quasars is an experimental 
fact which must be taken into account in discussing the problem of 

QSO origin. As can be seen, the difference between quasars and 
galaxies is not the tremendous absolute luminosity, which has led to 
the hitherto unsolved problem of how the power is generated, but 
only their different spectra and, apparently, different sizes. If mean 
radiation energy is equal for galaxies and quasars, it follows that they 
must share a common nature. Thus, attributing an inexplicable 
super-radiation to quasars is a delusion caused, as we will show, by an 
error in determining quasar distances in the cosmological theory and 
an arbitrary sampling approach when comparing objects.  

It is easy to see from (2), that the conditional distribution law 

p(m/z) of magnitude m at a given z is the conditional distribution 

law of absolute luminosity p(M/z). In this way the dispersions σ(m) 

obtained are equal to σ(M). The same holds for the distribution 

p(log θ /z). 

For the random field log ′′θ zb g  of Figure 5 we have made the 

same detailed statistical analysis as for m(z). The distribution func-

tion p( log ′′θ zb g  is given in Figure 7. It is also a Gaussian func-

tion with dispersion σ(log θ) = σ(log l) = 0.22 for all z. 

V. Determination of regression functions 
of random fields m(z), log θθ“(z) 

To determine regression functions M zb g  and logθ zb g  from 

statistical sets m(z) and log ′′θ zb g  given in Figures 4 and 5 the 

diagram is divided into n intervals ∆ log z€≅€0.1–0.2 and in each 

interval the mean value m z kb g  or l og ′′θ z kb g  is found resulting 

in discretization of all m z kb g  or l og ′′θ zb g  functions. Then, 

taking all points as equivalent, these data were used to determine a 
continuous regression function. In the process, it turned out that in 
all cases a linear regression emerged. 

This procedure makes it possible to solve two problems: first, to 

 
Figure 4. Hubble diagram for 12,600 spiral galaxies and 4,000 quasars (crosses); the central 
solid curve is the regression function. The two parallel lines are envelopes of the brightest and 

weakest galaxies and quasars at level m zb g  ± 3. Dashed line is a theoretical curve at a 

constant (standard) absolute luminosity equal to m(z)  = 5 log z + 22.4. 

 
Figure 6. Distribution law p(m/z) for dataset of Figure 4 at log z1 = –2 ± 0.15, log 
z2 = –1.5 ± 0.15 for galaxies and at log z3 = 0 ± 0.5, log z4 = 0.4 ± 0.15 for 
quasars. Solid curves are the Gaussian law; points are the experimental distribution when 

averaging in intervals ∆m = 0.4. Corresponding standard deviations are σ1 = 1.06, 

σ2 = 1.0, σ3 = 1.1, σ4 = 1.1. 

 
Figure 7. Distribution law p(logθ " (z) /z) for dataset of Figure 5 at log z1 = –2.5 ± 0.25, 

log z2 = –2.00 ± 0.25, log z3 = –1.5 ± 0.25. Solid lines are the Gaussian law. Points are 

the experimental distribution in the intervals ∆log θ = 0.1; standard deviations are equal to 

σ1 = 0.28, σ2 = 0.22, σ3 = 0.22. 
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determine the regression function in any form, linear or nonlinear, 
and, second, to eliminate the influence of inevitable non-uniform 

filling with measurements of the parameter field m(z) or 

l og ′′θ zb g  along coordinate z. This manifests itself, particularly, 

for example, for galaxies near boundary values z = 10–3–10–2.5 and 

z ≥ 0.2. It is easy  to understand that the usual procedure for finding 
a linear regression over all galaxy sets using the LMS method causes 
suppression of a boundary value contribution, with the result that 
the linear regression is determined by the data of the parameter field 
central parts, where there are many more measurements. Clearly, 
when averaging over intervals we do not count boundary intervals 
containing less than 10–100 data points per interval. In this way the 
difference between the linear regression over all data points and the 
regression over the intervals does not exceed 2–5 per cent in slopes 

of regression lines for m(z) and log ′′θ zb g  sets in Figures 4 and 5. 

This testifies to a statistically sufficient uniformity of data fields 

m(z) and log ′′θ zb g . The regression function m zb g  obtained in 

this way was then corrected for the Malmquist effect. 
The Malmquist effect is an understatement of the mean value 

m zm e s b g  due to observational sampling leading to a primary fixa-

tion of strong sources. In other words, weak galaxies are often 
missed in observations, and this reduces the slope of a regression 
function. In our case, as can be seen from the distribution laws in 
Figures 6 and 7, this effect, if it arises, is quite insignificant; other-
wise we would have some asymmetry in the distribution curves. 

Overestimating, we can assume that at z ≅ 3 “the tail” of the weak 

source distribution is cut off, beginning above m  + σ and at z ≅ 10–

2, above m  + 2σ. Then, as calculation shows (Troitskij et al. 
1992a,b) the error in determination of a mean value at z ≅ 3 is 

m true  – m mes  = 0.3 and at z = 10–2, m true  – m mes  = 0.06. 

Hence, the slope of a regression curve should be increased by 

0.24/2.5 = 0.1. A correction to the K-effect calculation using 
conventional formulas would be a mistake, since this calculation uses 

the expression for E(z)  (1) based on the erroneous theory. On the 
other hand there is no other way to determine the effect from any 
experimental data independent of the cosmological model. The 
essence of the K-effect is that with increasing z the measured value 

m(z) changes due both to distance R(z)  and to higher frequency 

ν = νo (z + 1) radiation from objects in its frame of reference and 
narrower bandwidth of radiation at the reception point. It is obvious 
that this effect will be smaller at lower z, and it turns out that in the 

standard model at z ≤ 0.2 it is negligible for galaxies. For the steady-
state model the K-effect has approximately the same or a lower 

value, resulting in a negligible decrease in the slope dm/d log z. 
The K-effect value for quasars in the standard cosmology, based on 
our earlier studies (Troitskij et al. 1992b; Troitskij & Gorbachova 

1993) is equal to K(z) = 0 for mean spectral index α  = –
1(s = λα) within the interval 0.1 ≤ z ≤ 5. In the static model this 
raises the slope of the regression function for quasars from 2.35 to 
2.40. 

VI. Global regression functions M zb g  and 

l ogθ zb g  and comparison with predictions 

Figure 8 presents the regression m zb g  for galaxies (dots) and 

quasars (crosses). As can be seen, the regression for the quasars 

coincides perfectly with the regression for galaxies at z ≅ 0.1, rising 

linearly to z = 4. We have a unified linear regression function 
which, after the corrections given above, is adequately described by 
the equation 

 m zb g  = (2.36 ± 0.1) log z + 18.5 ± 0.2 . (5) 

The regression function logθ zb g  is given in Figure 9 and described 

by the function 

 l og ′′θ zb g  = –(0.49 ± 0.05) log z + 0.81 ± 0.05 . (6) 

 
Figure 8. Regression function for m(z)  set of galaxies and quasars of Figure 4 calculated 

by intervals ∆log = 0.1. Points are galaxies. Crosses are quasars. General dependence 

m zb g  = 2.26 log z + 18.36. Dashed lines are theoretical curves at different m . 
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Since each mean value m zb g  and logθ zb g  in the diagrams in 

Figures 8 and 9 is determined by averaging n-data points running 
into the thousands and at boundaries in the hundreds, the random 
error of the mean value obtained in comparison with a true value is 

equal to σm = σ/n ≤ 0.1m. This error corresponds to the size of 
points in the diagrams. Likewise, due to the large number of galaxies 

in each averaging interval we have m zb g  = –2.5 log E zb g  and 

logθ zb g  = log θ zb g  with an error, based on calculations, of not 

more than 1 per cent. Both figures plot the theoretical dependences 

(4) at different constant values M zb g  = const and 

log l zb g  = const, whence we note a large discrepancy between 

experimental and theoretical statistical dependences. For slopes 

dm/d log z and d log θ /d log z, the dependences disagree by a 
factor of 2. This cannot be explained by inaccuracy of the meas-

urements of m and θ. Two possible causes remain: error in the 
theory or the influence of evolution of mean statistical luminosity 

M za f  and mean galaxy size l za f . The latter assumption saves 

the theory if evolution for a closed model is  

M zb g  = –2.64 log z – 24.5,  L zb g  = z0.956 1011.8, 

 l og l za f  = 0.52 log z – 2 log (z + 1) + 5.3,                    (8) 

 l za f  = z0.51(z + 1)–2 105.3. 

However, the required rate of mean luminosity evolution is abso-
lutely unreal, and does not agree with any realistic theoretical est i-
mates, while the required galaxy size evolution appears strange 
indeed: the size first increases with z approximately proportionally 

to z up to z = 0.3, and then drops off sharply as z–1.5. Therewith the 

mean true galaxy surface brightness L(z)/l2(z) increases as 

(z + 1)4. In spite of the awkwardness of this evolution, we make 
two suppositions to explain the discrepancy between theory and 
practice: the existence of the evolution of mean galaxy parameters 
and the inadequacy of the theoretical dependence of 

R(z) = Ro Ψ(z) on z. 
To identify the actual cause, a test comparing the observable 

dependence log θ  on the value m zb g  was of crucial importance. 

It might seem that this test cannot yield any new results, since a 

relation between log θ  and m  follows from the dependences 

m zb g  and log ′′θ zb g  (5), (6). However, this is not true. Eliminat-

ing log z from these expressions we have 

 l og ′′θ zb g +(0.21 ± 5⋅10–3) m  = 4.71 ± 0.05 . (9) 

Here we have used approximately 12,000 galaxies with measure-

ments of z, m and θ. To prove (9), we present the regression func-

tion of m and θ obtained with data on m and θ from 36,000 spiral 
galaxies, among which there are clearly 12,000 with measurements 
of z. As a result, we have 

  l og ′′θ zb g +(0.195 ± 5⋅10–3) m  = 4.58 ± 0.05 . (11) 

As can be seen, the coincidence with (9) leaves nothing to be de-
sired. The corresponding theoretical expression is found from (4) by 

eliminating the distance function log Ro Ψ(z, qo). As a result, we 
have 

 l og ′′θ zb g +0.2 m zb g  = 

  –log L lz zb g b g2 + 2 log (z + 1) + 5.3 . (11) 

As can be seen, the theoretical expression in the main corresponds 
closely to the experimental result (9) even though the latter was 
obtained from experimental dependences that were individually in a 
sharp contradiction with predictions of the theory. Obviously this 

happens because of absence of R(z)  in m  – l og θ . The only 

possible conclusion is that the reason for the discordance between 
the two classical tests and the predictions of the theory is an incon-

sistency between the theoretical dependence R(z) = Ro Ψ(z,qo) 
and the actual dependence. Comparing theoretical (11) and experi-
mental (10) expressions, and neglecting the component 

2 log (z + 1) as small at z ≤ 0.2 we obtain the following very 
important formula for galaxies 

 L lz zb g b g2  = 5.25 ,   10–3€≤ z ≤€0.2. (12) 

This relation was obtained by us previously for a number of small 
data sets (Troitskij 1993). 

Thanks to progress in astrophysical measurements, it is possible 
to carry out a direct measurement of functions (9) and (10) without 

separate measurements of m and θ. The point is that equations (9), 
(10) and (11) multiplied by 5 give a mean over-disk value of appar-
ent galaxy surface brightness. Therefore, because direct measure-
ments can be made of apparent surface brightness, we have a new 
cosmological test. 

VII. Galaxy surface brightness: the third 
cosmological test 

CCD technology allows a direct measurement of surface bright-
ness distribution over a galaxy disk. Measurements are made of the 
brightness of an area element visible within a solid angle which is 
many times smaller than the galaxy angular size. The resulting 

 
Figure 9. Regression function for logθ " (z)  of the dataset of Figure 5 calculated by 

intervals ∆log z = 0.1. Solid line is regression l o g θ zb g  = –0.49 log z – 0.81. Dashed 

lines are theoretical curves at different l. 
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apparent surface brightness distribution pattern is used to determine 

the mean surface brightness in magnitudes µ(z) averaged over the 
galaxy disk. According to the theory, this mean surface brightness is 

expressed in terms of m and θ″ equal in magnitude 

 µ(z) = –2.5 log E z zb g b gn s′′θ 2  

 = m(z) + 5 log ′′θ zb g . (13) 

It is easy to see that µ(z) is independent of R(z) . It differs from 

(11) by a factor of 5. Substituting in (13) the values m(z) and 

log θ″(z) from (4) we obtain a theoretical expression for the 
regression 

  µ z
z

z
za f a f

a f a f= −
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l
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The experimental value for regression µ ex zb g  has been determined 

from the set of random values µ(z) for 8,650 galaxies from the 

(Paturel et al. 1989) catalog according to (13). This ensemble of 

random µ(z) is given in Figure 10 together with the regression 
function equal to 

  µ ex zb g  = –0.13 log z + 22.67 ,     10–3 ≤ z ≤ 0.2.  (14a) 

From this it follows that the apparent surface brightness averaged 
over a galaxy disk is practically independent of z or increases 

weakly with increasing z, but does not decrease as 10 log (z + 1), 
as predicted by the standard cosmology theory (14). Now we deter-

mine the regression µ zb g  according to (13) through the experi-

mental regression functions (5) and (6) and we obtain the expression 

µ ex zb g  = –0.1 log z + 22.55, close to (14a). Thus, according to 

our calculations, the apparent surface brightness averaged at each z 
over a sufficiently large data set is practically independent of z and 

equal to µ ex zb g  = const  = 22.6 stellar magnitudes. According to 

numerous direct measurements the analogous value is equal to 

µ zb g  = 23 ± 0.5 (Dresler et al. 1990; Hoessel et al. 1987; Irwin et 

al. 1990; Peltier et al. 1990; Greaham 1992). In line with the above 
discussion, for comparison with the theory we take the experimental 

value of µ ex zb g  equal to 

 µ ex zb g  = 22.6 ± 0.6 ,   10–3 ≤ z ≤ 0.2 (15) 

where σ(µ) = 0.6. Comparing (15) with theoretical expression 

(14) we obtain L lz zb g b g2  (z + 1)4 = 36. Since functions 

(z + 1)4 and L lz zb g b g2  are of different nature and, conse-

quently, independent, each is equal to a constant value. It is obvious 

that (z + 1) = 1, then 

 
L

l

z

z

b g
b g2

6 0= . ,    10–3 ≤ z ≤ 0.2 (16) 

which coincides with expression (12), obtained from measurements 

of m and θ. 

VIII. Determination of r(z) and main statis-
tical parameters of galaxies and quasars 

For this purpose we must use some definite cosmological model. 
It is expedient to take the standard cosmology model, although its 
inadequacy is evident enough from the foregoing analysis. To de-
termine the distance function we use the experimental result (5) and 
(6) for the regression functions. In physical terms we have 

 E zex b g  = z–0.945⋅10–7.4,    ′′θ ex zb g  = 6.5″ z–0.49. (17) 

By comparing with corresponding theoretical expressions (4) we 
obtain two independent equations for three unknown functions. Due 
to this fact, the system does not have a unique solution, and this 

allows us to determine only relations R(z) / L zb g  and R(z) / l zb g . 

Or, in other words, we can express the desired distance function via 

arbitrary regression functions L zb g  and l zb g . For distances 

according to Eex  and ′′θ ex we have obtained  

(RoΨ)m = z0.5 (z + 1)–1⋅103.7 L zb g , 

(RoΨ)θ = z0.5 (z + 1)⋅3.1⋅104 l zb g . 

Since L zb g  and l zb g  are related by expression (16), both the 

relations obtained can be expressed in terms of L zb g . As a result 

we obtain different dependences on distance z at the expense of 

terms (z + 1) associated with the expanding universe hypothesis. 
However, both distance functions should naturally be strictly similar, 
since in both cases they give the metric distance, but not some 
effective distances adopted in the standard cosmology. So, we seem 

to arrive at the initial state, because to determine R(z)  we must now 

know the functions L zb g  and l zb g . This turns out to be quite 

possible using additional new statist ical tests. However, there exists 

an apparent opportunity to choose dependences L zb g  and l zb g  

which, after their substitution in (18), give the theoretical value 

RoΨ and save the theory. For the model, qo = 1 or qo = 0 when 

RoΨ = Roz/(z + 1) it is sufficient to suggest the evolution 

L zb g  = Lo z and L(z) = l o z0.5/(z + 1)2. But, as noted above, 

these dependences adjusting observations with the theory are unreal 
both by the form and value. 

 
Figure 10. Diagram of dependence of mean over disk surface brightness on redshift for 

8,550 spirals. Solid line is regression function µ zb g  = –0.134 log z + 22.7. 
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To define functions L zb g  and l zb g , we make use of the in-

dependence of dispersions DM(z)  and D log l (z) of redshift z. 

From this fact we will show that the mean values m zb g  and 

log l zb g  = log l zb g , and consequently, L zb g  = Lo and 

l zb g  = lo are independent of the redshift. We now consider the set 

of galaxies at given zk ± 0.5 ∆z. The luminosity of each galaxy 
evolves according to its individual law, tht total determining the 

evolution of the mean value M  = Mo ϕ(z/zo), where Mo is the 

mean value at some z = zo. This is equivalent to evolution of each 

galaxy in the set according to m(z) = M(zo) ϕ(z/zo) where m(z), 

M(zo) are the random values distributed by the normal law and 

ϕ(z/zo) is a regular function. The dispersion of the random m(z) is 

equal to Dm(z) = ϕ2 (z/zo) D M z ob g  and the mean value, respec-

tively, to m zb g  = M z ob g  ϕ(z/zo). Due to the absence of a 

marked drift in the dispersion to either side, ϕ= 1 and, hence, 

Lo  = Lo, l o  = lo. We now consider the question: at the expense 

of which parameters may evolution of galaxy luminosity take place. 
Galaxy evolution is obviously determined mainly by the number of 

stars N, their temperature and sizes r, i.e. 

 L≅ ∑N r M F M M Mp p r p
2 c h c h b gν ϕ, ∆  

where Mp is the absolute luminosity of a star, ϕ(Mp) is the star 

luminosity distribution function, F(ν,Mp) is the Planck emissivity 
function expressed via the absolute emissivity of the stars. The sum 
value is defined by the immutable laws of the star main sequence 
formation typical for all galaxies. Thus, luminosity evolution may 
be related to the evolution of star number in galaxies, i.e. 
L€≈€N = 10n; but on the other hand L = 102⋅10–0.4M and, 

therefore, n = –0.4M + 2. For M = –21, n = 10.4, which is 

close to the known value 10€≤€n€≤€12. The fact that M  is 
independent of z means that the mean number of stars in galaxies is 
constant over the space. However, in any given place in space the 
relation (16) is observed, which shows that on the average the 
luminosity of each galaxy at given z is connected with its size, i.e. 
with the number n of stars in it, and this connection is independent 

of z. The same reasoning can be applied to the evolution of log l. 
Therefore, the random values m and L, as well as log l and l, have 

their own invariable values of dispersion and mean values 

M zb g  = Mo, L zb g  = Lo, l zb g  = lo over all the space 

studied, i.e. 10–4 ≤ z ≤ 5. Therefore, the field of random values m(z) 

and log l(z) is a stationary one. 

Another confirmation of the invariance of the mean luminosity 
is the z-independence of the mean statistical spectral index of quasar 

optical spectra in all bands of redshift 0.1€≤€z€≤€4 and galaxy 

spectra studied up to z€≤€0.2 (Troitskij 1993). 

We pursue our determination of R(z) , and now substitute 

L zb g  = Lo and l zb g  = lo in (18), which yields, as already 

mentioned, two different functions (RoΨ)m and (RoΨ)θ expressing 
one and the same metric distance, each being in disagreement with 
the theoretical expression for the standard model 

RoΨ = Roz/(z + 1). An indispensable requirement of the equality 
of both expressions for metric distance is fulfilled only on the condi-

tion (z + 1) = (z + 1)–1 = 1. Finally, we have  

 (z) = Ro z  ,   Ro = 103.7 Lo  = 3.1⋅104 lo , 

 L lo o  = 6.2 . (19) 

Hence, the astrophysical predictions of the standard cosmology are 
not experimentally supported. We therefore arrive at new expres-
sions of the z-functions for observable parameters 

E zb g  = Lo/Ro
2Ψ2(z) and θ zb g  = lo/RoΨ where Ψ = z . 

To find Lo, Mo, lo and Ro, it is sufficient to use the mean values of 

galaxy luminosities in the vicinity of our galaxy known from direct 

measurements within radius z€≤€10–4. It may be considered that 

Mo = –20.5m ± 0.5; then 

 R(z) = 600 z Mpc ,   Lo = 1010.2L©, 

 lo = 19 kpc,  µo = 22.7 . (20) 

The accuracy of Lo, lo and Ro values is determined by the accuracy 

of estimation of the galaxy mean luminosity Mo. Any inaccuracy of 

Mo within ± 0.5m produces a maximum error of no more than ± 25 
per cent in the given data. 

The independence of mean luminosity values, sizes, surface 
brightness, the form of continuum spectra of the galaxies and qua-
sars as well as the dispersion from object locations in Metagalaxy 
space for the set complies with the well-known perfect cosmological 
principle, i.e., uniformity and isotropy of the universe in space and 
time established earlier relative to the mean volume density of the 
matter. Certainly, the constancy of the mean values mentioned does 
not exclude evolution of luminosity and size of individual galaxies. 
Appropriate here is an analogy with a mean strength of a large 
group of people, which remains unchanged in time, even though 
each individual experiences an evolution of his strength. The statis-
tical uniformity of galaxy characteristics in universal space testifies 
to the stationary state of its processes. From this we may conclude 
that its age must exceed the age of the galaxies, estimated as 15–20 
billion years, at least by an order or two. 

IX. Discussion of results of measure-
ments 

The main point at issue is the discrepancy between our meas-

 
Figure 11. Redshift-distance dependence taken from Rowan-Robinson (1988). Different 
presentation of experimental points corresponds to different method of distance measure-
ments. 
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urements of the distance function equal to R(z) = Ro z  and the 

Hubble law of linear dependence on distance R(z) = RHz. This 
discrepancy is not a strong argument against our results, since the 

Hubble law has been established for small values of z ≤ 0.02, at 

which any smooth function of distance, including R = Ro z  is 

hardly dist inguished from the line. Besides, the galaxy distance scale 
has been established mainly by Cepheids without taking into account 
the evolution of the product of absolute luminosity by oscillation 
period used in conjunction with it. The evolution of this parameter 
for Cepheids becoming supergiants may be essential even for dis-
tances less than 1 Mpc. Finally, the Hubble law was obtained over a 
small number of measurements, not exceeding a hundred and fifty. 
Due to a wide scatter of data, this is statistically insufficient to 

establish a reliable linear connection between R and z. Numerous 
corrections, for example, for proper motion of the Sun, Galaxy and 
local group of galaxies, etc., detract from the objectiveness of the 
data. Further details can be found in a thorough review by Rowan-
Robinson (1988). A diagram of the final direct measurements of 

R(z)  taken from this work is given in Figure 11. It is plotted by 

measurements of z and R for 160 objects with data grouped by 
similar distances and measurement methods. Our nonlinear depend-

ence R = 600 z  is also plotted in this diagram. Some departure 

of the diagram points from this dependence at R ≤ 30 Mpc is likely 

to be connected with elimination by the sampling of data with zero 
or even negative velocities, which are bound to occur due to the 
proper (peculiar) motions of the galaxies. These velocities, with a 

peak at a level of 3σ = 900 km/s within distances 0€≤€R€≤€30 
Mpc, exceed Hubble’s velocities. This would cause a large spread of 
data which, however, is not seen in the diagram. It is obvious that 

direct measurements of R(z)  may give unambiguous results if we 
have a statistically representative dataset. 

Arp & Van Flandern (1992) recently proposed new methods for 

measuring R(z)  on the basis of the Tully-Fisher law. The data are 

given in Figure 12 in comparison with R = 450 z . The striking 

thing is not that these—and the measurements considered above—

confirm the quadratic dependence on z, but the fact that they give 

the same value of Ro = 500–600 Mpc which has been found from 
astrophysical measurements. This is an impressive confirmation of 
the results. Most dramatic is a new experimental confirmation of 

the R = Ro z  law from a quite unexpected field of measure-

ments. As is known, there are currently 32 quasar objects which, 

according to measurements of their structure at radio wavelengths, 
demonstrate superluminal velocities of expansion if one applies the 
formulae for standard cosmology to calculate the object  distances 
(Cohen et al. 1988). By measuring the rate of change of the source 

angular dimension and knowing the distance R(z) , it is trival to 
obtain the corresponding linear velocity of the radio-luminous 
object. 

If we consider the existence of superluminal motion of matter 
impossible, the phenomenon is explained by the light-spot effect 
(Ginzburg 1985). According to the theory, this effect takes place 
when there is an acute angle between the directions of moving 
luminous matter and observation, if the mat ter moves with light or 
nearlight velocity of relativistic particles. This theory faces the 
particular difficulty of explaining why the only matter only moves 
nearly along the line of sight to the observer. Leaving aside the 
theory, we choose to approach the problem from the purely ex-
perimental viewpoint. The paper mentioned above gives angular 

rates of change dθ/dt = &θ  of object dimension in milliseconds of 

arc per year, as well as z values for the object. Figure 13 plots log &θ  

as a function of log z for 32 sources. The regression obtained by the 
least squares method is also given. The equation of this regression 
function is 

 log &θ  = – 0.47 log z – 1.03 (21) 

with a standard deviation σ(log &θ ) = 0.23. From this, express-

ing &θ (z) in radians per year, we obtain 

 &θ  ex(z) = 0.5⋅10–9 z–0.47 (22) 

This relation is easily explained by the steady-state model of the 
universe and its related experimental parameters. We might legi-
mately suggest that all cases of the matter expansion in quasars 
entail one and the same physical process, one and the same cause. 
This process may be the motion of either light or relativistic part i-
cles in the source frame of reference. Therefore, the increase of the 

apparent angular size of the source is &θ  (z) = Ro sin α /R(z) , 

where α  is the angle between the direction of the expansion and the 

line of sight. It is obvious that the motions at α  ≅ 0 or π will not be 
noted since the object moving in these directions is projected to the 
source itself. It seems pract ically to observe the motion in a wide 

angle interval α  = π / 2 ± π / 3. Averaging the expression 

for &θ (z) over α  in these limits we have the theoretical 

 
Figure 12. Redshift-distance dependence according to Tully -Fisher. Solid line is 

R = 450 z .  

 
Figure 13. The rate of change of angular size for quasars as dependent on redshift. Straight 

line is a regression function equal to log(dθ / dt) = –0.57 log z – 0.91.  
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value &θ (z) = 0.85 Ro/R(z) , where in the general case R(z) = Ro 

Ψ(z). Comparing this with the experimental function &θ exp(z) (22), 

we obtain Ψ(z) = z  and 0.85 Ro = 0.5⋅10–9 Ro. The main and 

unexpected result here is a confirmation of the dependence 

R(z) = Ro z  obtained above. Of even greater surprise is the fact 

at Ro = c = 0.31pc ⋅ year–1 Ro = 530 Mpc. This is a dramatic 
result. On the basis of this analysis, we believe that measurement of 
the angular dimension drift in quasar structure features is a remark-
able crucial cosmological test since it does not require any special 

assumptions to determine R(z) . We cannot see how to interpret the 

dependence R = Ro z  derived from the experimental data in 

any other way, or by what reasoning it might be rejected, save to 

suggest that Ro depends on z. However, on the contrary, from these 
observations a very important conclusion seems arguable, viz., that 
light velocity, and hence, the maximum velocity of the matter, are 

independent of z—i.e. of time—and equal to a constant value. 
The quite wide scatter in the data is most probably connected 

with errors in the complex measurements of extremely small angular 
shift. A quadratic dependence of redshift, it should be noted, was first 
proposed theoret ically by Segal (1957) on the basis of group theory. 

The resultant formula is given as the law z = tan2R/2Rc (Segal 

1993), where Rc is the universe radius. For small distances 

R <<  Rc, the R,z relation coincides with our experimental result, 

and is equal to z = R2/4 R c
2 . This relation was checked by a com-

parison of the observed dependence m(z) with the theoretical one 

at R = 2Rc z  using statist ical methods (Nicol and Segal 1978). 

As a result, satisfactory agreement was shown between the ob-
served data and the theoretical dependence 

m(z) = 2.5 log z + const. From this, it is concluded that z ~ R2. 
This conclusion is not, however, unique and unambiguous. It is 
correct if the luminosity evolution is a priori absent, i.e. 
L(z) = const. Otherwise the evidence suggests that 

m(z)€≈€log L(z)R–2 (z), from which R(z)  cannot be deter-

mined, since L(z) is unknown. 

Segal (1990) gave the value Rc = 160 ± 40 Mpc, which was 
obtained from measurements of quasar angular expansion rates 
similar to those made by us above, independently. Nicol and Segal 
(1978) found that a very instructive and curious thing happened 

when they determined the R,z dependence. As early as 1925, 

Lundmark (1925) had shown that the observed m(z) dependence 

corresponds to the quadratic law z ~ R2. In the same years, Hubble 

and Humason carried out m(z) measurements of different galaxies 
which, as Segal has shown, correspond to the quadratic law, i.e. 
dm/d log z = 2.5. Only a selection of first rank galaxies in clusters 
followed the linear law, and was used later. Nicol and Segal (1978) 
offer compelling arguments to show the fallacy of the first  rank 
galaxy selection method, and point out the correct procedure for 
sampling the brightest galaxies, which was proposed independently 
and justified in the present paper. In spite of a great number of 
publications (about 30) by Segal and his coworkers devoted to this 
problem, they have not convinced the scientific community. This is 
explained first by the lack of proofs of the uniqueness of the quad-
ratic law, and second, by the use of original, unconventional statist i-
cal methods to analyse a relation between the observed and theoret i-

cal dependence m(z), instead of the obvious and widely used meth-
ods of regression analysis.  

Unfortunately, few of Segal’s works were published in the astro-
nomical literature and, therefore, were not known up to 1994; but 
on the other hand this makes the coincidence of methods and results 
all the more valuable and objective. Where there are differences, 

they are by no means serious. For example, according to Segal Rc is 

at once the radius of the universe and the horizon, since at  R = Rc, 

z = ∞ and the quadratic dependence of the redshift takes place only 

at R <<  Rc = 160~Mpc. In our case, the quadratic relation 

R = Ro z  is unlimited at least up to z = 5, and Ro has a mean-

ing of distance at z = 1. The size of the universe does not follow 
directly from observations.  

The work of the prominent researcher Toivo Jaakkola closely 
parallels the approach in the present paper. The style of his invest i-
gations is a combination of ideas based on principles of universe 
structure with a search for observational confirmation of these 
principles. This includes the Perfect Cosmological Principle, i.e. the 
idea that the mean values of matter and radiation parameters in the 
universe are invariable and uniform in space and time (Jaakkola 
1989). In the cosmology based on this principle, called in Jaakkola’s 
work “Equilibrium Cosmology,” the redshift is formed in the process 
of light propagation in a stationary non-expanding space. This is a 
fundamental statement which transforms the redshift problem into 
the field of the relationship between electromagnetic radiation and 
the properties of the physical vacuum. As a concrete manifistation 
of this relation, Jaakkola considered an electrogravitational interac-
tion resulting in an exponentional dependence of the redshift on 

distance in the form (z + 1) = exp α  r, where α  = 1/Ho
–1 c. This 

corresponds to the well-known “tired light” hypothesis. in which the 

frequency changes proportionally to the time τ = v/c taken by the 
light on its way from the source to the observer. However, in prac-

tice this relation leads to the linear Hubble dependence r ≅ cHo
–1 (z-

0.522) up to z = 0.5–0.7, which, as we have shown, does not corre-
spond to reality. In general, Jaakkola had to resort to the Hubble law 
in his calculations, since he had no other authentic alternative at the 
time. Now, there is practically no doubt that the redshift mechanism 
must be sought taking into account the quadratic dependence of 
redshift on distance. This of course does not rule out the general 
concept of “Equilibrium Cosmology”. This idea made it possible for 
T. Jaakkola to see the possibility of MBR formation due to thermal 
radiation of stars in the universe, and to suggest a solution to the 
puzzle of the observed equality between MBR energy and the energy 
of optical radiation from stars in our Galaxy (Jaakkola 1993). Our 
findings are, in essence, a crucial experimental verification of the 
view that the universe adheres to the Perfect Cosmological Princi-
ple, but not to the gravitational equations of Newton or Einstein. 

Another result requiring discussion is an unexpected coincidence 

of m(z) dependences for galaxies and quasars. We are told that 
quasars cannot be used together with galaxies to plot a general de-

pendence m(z) since they are of a different nature. Galaxies have 
thermal radiation and quasars have synchrotron radiation, so how 
can they be combined in a Hubble diagram? And so on? First, we do 
not combine them by force; they combine themselves, without 

asking astronomers for a single m(z) dependence, apparently be-
cause they have the same luminosity as galaxies. The unification can 

be seen only in an unbiased usage of all m(z) data for a large number 
of galaxies and quasars, not for an arbitrary selection, as in Figure 3. 
Second, quasars and galaxies occupy one and the same space, and 
their optical radiation is subjected to the same action by this space, 
resulting in the observed redshift. By virtue of this fact, quasar 
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apparent luminosity m(z) is determined by one and the same de-

pendence R(z)  as for galaxies. This is why they have the same slope 

d dm zl og  of the dependence m zb g  as galaxies. 

Sometimes it is assumed that quasars have an additional initial 
redshift that is not connected with distance. However, this redshift 
cannot be identical for all quasars; otherwise excluding this effect 

would cause a displacement of the quasar m(z) dependence in the 

Hubble diagram and destroy the fit with the galaxy m(z) depend-
ence. Since this is not the case, the additional redshift must be de-
pendent on distance, much like the main shift; i.e. there is no need 
for it. So, instead of heaping up new assumptions, one should start 
with the most obvious idea that galaxy and quasar redshift is deter-
mined only by distance from the observer. Needless to say, this 
assumption does not contradict the quasar synchrotron radiation 
mechanism and their other parameters, such as small dimensions etc. 
Therefore, quasars are quite suitable for determining R(z)  depend-
ence using our methods. However, one cannot ignore the phenome-
non, discovered by Arp, of close associations between some quasars 
with large redshifts and galaxies with significantly lower redshift 
which seem to show signs of physical connection. There is no rea-
sonable explanation of this phenomenon so far. 

Lastly, we must return to a detailed consideration of how and to 
what extent the selection method of first rank (the brightest) galax-
ies can continue. For this purpose we return to Figure 4, giving the 

distribution of galaxies in m,z space and the theoretical dependence 

m(z) = 5 log z + 21.5 at a constant luminosity of M = 21.5 and 

qo = 1 which was used to plot experimental m(z)-data of the 
galaxies which were allegedly uniform in absolute luminosity given in 
Figure 1. As can be seen, selection of the brightest galaxies at small 

z = 10–3 proceeds from the left corner of the m(z) field where 

galaxy luminosity m is 3σ = 3.3m greater than the mean value M  
corresponding to the maximum of the Gaussian distribution curve. 

At z = 0.1–0.5 the theoretical curve goes through the field of the 

galaxies and quasars of luminosity (3–4)σ less than in the maximum 
of the distribution curve. In this field there may be (this is easily 

calculated by integrating the distribution function from m + 3 to 

m = ∞) about 3⋅10–3 N galaxies, where N is the total number 

within redshift interval z = 0.1–0.5. From these low luminosity 
galaxies, sometimes grouped in clusters, we can always select the 
brightest ones which, by definition, turn out to be within the limits 
of the theoretical curve. Thus, the method of selecting the brightest 

galaxies from clusters leads to the formation of an m(z) dependence 
in which galaxy absolute luminosity is not constant, but changes 

from M – 3σ to M +(3–4)σ. This explains the high value of 

slope dm/d log z = 5. In reality, galaxies and quasars with the same 
standard luminosity lie on lines parallel to the regression curve, 
which corresponds to galaxies lying in the maximum of the luminos-

ity distribution curve and having luminosity equal to M . This very 
dependence should be used for comparison with the theory. It is 
clear from the above that the brightest galaxy method can be mod-
ernized if we select the brightest galaxies, not from clusters, but 

from all objects in the given interval ∆z at different redshifts 10–

3 ≤ z ≤ 4 by observing representative samples. The work of Sandage 
and Perelmutter (1991) is closely related to the galaxy selection 
method described here. It gives a comparison of galaxy surface 
brightness as dependent on redshift with predictions of standard 
model of cosmology (14) 

 µ(z) = –2.5 log L(z)l–2(z) + 10 log (z + 1) + const.  

Here, as mentioned earlier, the second term is determined by the 
expanding universe hypothesis, and is called the Tolman signal. A 
total of 19 galaxies were used to obtain the experimental depend-

ence within the redshift interval 0.03€≤€z€≤€0.59 on the basis of 

m(z) and q(z) data which, according to (13) yield surface brightness 

µexp(z). In this way, it is obviously necessary to select galaxies with 

the same ratio L(z)/l2 (z). An attempt was made in this work to 

avoid the influence of sampling, so only those galaxies were selected 

which were on the theoretical Hubble line m(z) = 5 log z + const, 

where according to the standard model L = const. Then, from the 

galaxies selected in this way, individuals were chosen for which the 

theory gave one and the same value l. This selection method is not 

correct, since galaxies are chosen using the theory, which is what is 
being tested. As shown above, this sampling yields galaxies with an 
absolute luminosity that is strongly dependent on z. In this example, 
we see once again the need to use statistical methods of analysis and, 
consequently, large datasets that neglect the influence of large 
dispersions. The Tolman signal can be extracted only from the 

regression dependence µ zb g  determined from large datasets that 

are uniform over visible and easily stated features such as, for exam-
ple, galaxy morphology type. It follows from the above that select -

ing of galaxies by features of their parameters m and l is impossible 

if m and l are measured by indirect procedures using these or other 

hypothetical theoretical dependences. Until now, no reliable direct 
methods had been developed, since the methods of Tully-Fisher and 
Faber-Jackson are statistical. The criteria for selecting sets of galax-
ies and quasars may only be parameters that are defined unambigu-
ously and directly, for example, galaxy morphology type, peculari-
ties of the radiation spectrum, the structure of the galactic nucleus, 
or other established types such as, for example, Seyfert galaxies, and 
so on. 

We should note that our results on normal distributions of gal-

axy luminosities and linear dimensions, respectively log L and 

log l, are in sharp contradiction to the generally accepted Schechter 

distribution. The latter was determined by L data for the galaxy set 

at 10–3 ≤ z ≤ 10–1 obtained by calculation from the apparent lumi-

nosity m(z) using the formulae from standard cosmology (1) and 
(2). This has resulted in a mixture of experimental data with un-
proved (and apparently now erroneous) theory. Actually Schechter 
introduced a distortion in the distribution with errors in determining 
L. This led to an asymmetric distribution. A pure experimental 

distribution of m (and L) is possible for galaxies in a sufficiently 

narrow z-interval. It is also possible to determine the distribution 
over all galaxies or all quasars separately and together within all 10–

3 ≤ z ≤€4 intervals if we substract regressions m zb g  from he set 

m(z) and find the distribution from the difference. In so doing, we 

take away the regular part from the dataset m(z), leaving the purely 

random part m(z) – m zb g  with zero mean value. In our case, the 

regression m zb g  for the galaxies and quasars is given in equation 

(5). The calculated distribution is presented in Figure 14 separately 

for all galaxies within interval 10–3 ≤ z ≤ 0.1 and all quasars at 10–

1 ≤ z ≤ 4, as well as for all together within 10–3 ≤ z ≤ 4. This is what 

we call a true normal log L, i.e. m distribution. 

In conclusion, we might suggests that galaxy catalogues with ex-
perimental data of apparent parameters are not to be added with 

different reductions and corrections, such as the K-correction or 
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Tolman’s effect, and others derived from an unproved theory. This 
makes for catalogues that are ill suited for objective experimental 
investigations.  

X. Theoretical conclusions 

This section arises from a need to discuss the theoret ical conse-
quences and new cosmological hypotheses that follow from the 
experimental results, namely, the nature of the redshift and micro-
wave background, the size and lifespan of the Metagalaxy, the 
structure and evolution of matter in the universe, and others.  

a) On the nature of the redshift 

The experimental dependence z R R o= 2 2  found here, and 

the demonstration that the redshift occurs in the process of light 
propagation, severely limit the scope of possible hypotheses to 
explain the nature of the redshift. The scope is further narrowed if 
we require that a new explanation of the redshift should be grounded 
in known processes that are studied in physics. These conditions are 
met by the well-known gravitational shift. In fact, according to 
classical physics a spherical light wave propagating in an infinite 

medium with a uniform matter density ρ will do work against the 
gravitational force of the matter enclosed by the spherical wave. 

This causes a decrease of the energy quantum ε = hν by an amount 

dε = ε c–2 dϕ, where ϕ = –4π GR2/3 is the gravitational potential 

of a sphere of matter and \varepsilon ε c–2 is the equivalent photon 

mass. From this we obtain dν /ν = –8 π Gρ R dR/3c2. Integrating 

over R from R = 0 and taking into account that the radiation 

frequency changes from ν1 at the time of emission to νo at the time 
of observation, we have 
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where r g
2  = 3c2/8π Gρ is the gravitational radius of matter uni-

formly distributed in space. In the relativistic interpretation 

ν1/νo = g o o
− 1

2  where goo is the metric tensor component for weak 

gravitational fields equal to goo = 1 + 2 ϕ/c2, which yields a redshift 

(z + 1) = 1 1 2 2− R r g . For R r g<< , z R r g= 2 22  in both 

cases. According to (19) in our case, z R R o= 2 2 ; therefore, to 

match the gravit ational redshift hypothesis, Ro should be equal to 

rg. With Ro = 600 Mpc, it is easy to see that the average matter 

density in the Metagalaxy should be ρ = 2⋅10–28 g cm–3. This is 3 
orders more than existing estimates of the density of radiating 
matter. The same situation arises in standard cosmology, where for a 

closed model the matter density is required to be equal to ρ = 10–

29 g cm–3. This has led to the conclusion that 99 per cent of the mass 
is in a hidden state. Following this hypothesis, in our case we might 
assume the existence of a nearly thousand times more hidden mass 
than visible mass. However, the search for hidden mass has not 
yielded results. Hence, it follows in our opinion that a new hypothe-
ses should be developed to account for the quadratic dependence on 
distance. At present a number of hypotheses have been proposed 
concerning the nature of the redshift in the work of Kropotkin 
(1989), Rvachov (1994), Popov (1978) and others, which it would 
be worthwhile to develop further in light of the present experimen-
tal results.  

b) The microwave background radiation 
According to the results obtained here, the universe appears as a 

practically unlimited system of galaxies. This makes it possible to 
explain the observed microwave background radiation as the total 
thermal radiation of stars in the optical and radiowave ranges (Tro-
itskij 1994, 1995). Briefly the findings are as follows. The radiation 

flux at frequency ν of stars of a given spectral class at distance R in 

solid angle Ω  of a radiotelescope antenna pattern in a volume 

element ΩR2 dR is 

 d d dϕ π ν ν= r nmrR F T R2 2 ,b g  

where F(ν,T) = 2hν3/c2[exp(hν/kT) – 1)] is Planck’s function for 

the emissivity of a star with photosphere temperature T, ν is the 

radiation frequency in the star’s reference frame, n is the volume 

density of galaxies, m is the number of stars in the galaxy, and r is 
the star’s radius.  

 

Figure 14. Distribution laws p[m(z)  – m zb g ] for galaxies and quasars in the set of 

Figure 4. Solid lines represent Gaussian law. Points are the experimental distribution; G for 
12,440 galaxies, Q for 4,000 quasars; G + Q is the total for galaxies and quasars. Corre-

sponding standard deviations are equal in magnitudes to σ1 = 0.95, σ2 = 1.15, σ3 = 1.1. 

Averaging interval is ∆m = 0.4.  
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In addition to a regular attenuation of R2 times on the way to an 

observer, the flux dϕ will undergo an attenuation due to the redshift  

of (z + 1) times, equal to the ratio of emitted and received radiation 
frequencies, as well as due to radiation screening (absorption) by 
galaxies encountered along its way. It is readily seen that a quantum 
of the screened radiation is equal to the ratio of the sum of galaxy 

areas nl2R3/3 along the line of sight and the total area of the an-

tenna pattern cross-section ΩR2, i.e. nl2R/3. Hence, a quantum of 

transmitted energy is equal to γ = (1 – 0.33l2 nR). As a result, the 

luminosity at the point of observation will be 

dE/ dνo = γ dϕ/(z + 1)R2. Integrating this expression over R at 

R = Ro z  and taking into account that dν/(z + 1) = dνo we 

have the observed luminosity spectral density E(νo) at frequency νo 
from srars of the given spectral class. Summing over all star spectral 
classes in the main sequence, we obtain the total flux. Comparing 

this with the blackbody radiation at the same frequency νo, we find 

the effective temperature Tb of stellar radiation according to 
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Here Mp is the photometric luminosity, ϕ(Mp) is the luminosity 

function of the main sequence stars, r(Mp) is the star radius relative 

to the Sun’s radius Rsol, and Tp is the star temperature for the given 

luminosity. The value of zo is determined from the condition 

γ(zo) = 0 and is equal to zo = (5-7)⋅103, which corresponds to the 
integration interval 40,000 Mpc. The calculation gives the back-

ground temperature Tb = 2.73 K in the wavelength band 

λo ≥ 0.1 cm. However, for wavelengths λo < 0.1 cm, the back-
ground brightness temperature increases sharply up to hundreds of 
degrees at optical wavelengths. Figure 15 gives the dependence 
predicted by Troitskij and Aleshin (in press) of background tempera-
ture on wavelength as compared with the theoretical data which, as 
can be seen, confirm the theory. 

The other extremely important result of the background star 
hypothesis is an explanation of the heretofor unsolved coincidence 
of two fluxes: the optical radiation of all stars in our galaxy and the 
background radiation. From expression (24) it is seen that the left 
part appears as radiation of stars from one mean galaxy, since each 

galaxy on the line of sight contributes only at one frequency ν equal 

to νo (z + 1). Placed at different z, all galaxies finally form the 
radiation of one galaxy, with Planck’s distribution of contributions. 
If we integrate (24) over all frequencies, then stellar radiation gives 
the volume density ~ 0.25 eV/cm3, just as the as 3 K background 
does. Lastly, the theory suggested here makes it possible to deter-

mine the value of small-scale fluctuations ∆T/Tb and their depend-

ence on the antenna pattern width in minutes as ∆T/Tb = 5⋅10–

5/ Ω , which coincides very nearly with the observed value. 

c) Structure, size, lifespan and evolution of Me-
tagalaxy 

Obviously, astrophysical data cover only the visible part of the 

universe up to z = 5 with a radius according to our data of about 

R = 600 z  ≅ 1,500 Mpc. In this space interval, corresponding 

to a time interval of about 5 billion years, we does not observe any 
noticeable evolutionary changes in mean parameters of galaxies, 
quasars and radiation. On this scale, the Metagalaxy appears as a 

system in a stationary stable state. Astrophysical data obtained to 
date do not give any information on the time of the Metagalaxy’s 
origin and its lifespan. However, on the basis of the statistical uni-
formity of galaxy and quasar properties, we may conclude that the 
Metagalaxy’s lifespan should be at least one-two orders more than 
the estimated lifetime of galaxies, as well as estimations of the 
universe’s lifespan in the standard cosmology. This conclusion is 
clear enough, since the time to attain the observed stationary equi-
librium state should be much more than the lifetime of objects in the 
universe. Space appears to be Euclidean, as it follows from experi-
mental expressions for apparent luminosity and angular dimensions 
of galaxies. The Metagalaxy’s dimensions appear to be determined 
by the distance beyond which electromagnetic signals no longer 
reach the observer. In the standard cosmology, for a closed model a 

visible boundary or horizon occurs at the distance RH = cH–1
o = 

6,000 Mpc, for Ho = 50 km/s⋅Mpc. Thus, 

ρ = ρk = 3 82H Go kπ ρ  = 10–29 g cm–3. It is easy to verify that 

at this matter density RH is equal to the gravitational radius 

rg = 3c2/8π Gρk = cH o
−1 . 

In our case, explaining the redshift by the action of the gravita-
tional field, the horizon is the gravitational radius corresponding to 
the observed mean density of the visible matter in the Metagalaxy, 

equal to about ρ = 10–31 g cm–3 which gives the radius of visibility 

(radius of the Metagalaxy) Rg = 40,000 Mpc. 
Certainly,  this cannot be taken as a boundary beyond which 

nothing exists, i.e. it cannot be the boundary of the universe. Other-
wise, the Earth would be in the centre of the universe, i.e. in a par-
ticular, preferred position. This is hard to believe; it is more likely 
that the universe is infinite, and for each observer in it there exist s a 
proper Metagalaxy with the same horizon for all observers equal to 

Rg. This boundary of visibility Rg = 4⋅104 Mpc, according to the 

relation R = 600 z , corresponds to the maximum “visible” 

redshift to zm = 5⋅103. We might also define the boundary of visi-
bility as a distance at which projections of central regions of galaxies 
on the projection (visual) plane fill it completely. This boundary, as 

was shown above, is equal to Rm = 1/nl  2⋅0.33 which, with n = 3 

and l = 5 kpc gives Rm = 40,000 Mpc. Surprisingly, this distance is 

close to the gravitational radius. By taking the obtained estimate of 
the horizon we actually eliminate the possibility of explaining the 

 
Figure 15. Theoretical dependence of brightness of stellar background temperature 

on wavelength for a steady -state model of the universe at zo = (5-7)⋅103 as 
compared with the measured data (crosses).  
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redshift as a gravitational shift. We can find the red gravitational 

shift for quasars using formula (23) for Rg = 4⋅104 Mpc. The quasar 

distance at z = 5 according to (20) is equal to R ≅ 1,500 Mpc, so 

the gravitational shift for quasars should be z = 3⋅10–4. As can be 
seen, this situation arises due to the low matter density in the Me-
tagalaxy, equal to 10–31 g cm–3. Thus, we come to a dilemma: either 
we take the gravitational origin of redshifts, and conclude that there 
exists a tremendous amount of hidden mass in a small Metagalaxy, 
which eliminates the explanation of the microwave background by 
stellar optical radiation; or we take the known measured density of 
matter, as large Metagalaxy and the possibility of explaining the 
microwave background radiation by stellar radiation, which prevents 
us from explaining the redshifts of galaxies and quasars as a gravita-
tional shift. Evidently, we should base ourselves on real measure-
ments and estimates of matter density in drawing further conclu-
sions. The latter version appears to be more experimentally 
grounded, logically more economical and contains ad hoc assump-
tions, such as a huge hidden mass, etc. 

XI. Conclusions 

An investigation of the problem of the agreement of the stan-
dard cosmology with reality has shown that the theoretical redshift -
distance relation based on the hypothesis of an expanding universe 
does not correspond to the experimentally measured dependence. 
The latter shows that the redshift cannot be explained as a kine-
matic Doppler effect or by space expansion, in accordance with the 
relativistic theory of gravitation. According to the available data, 
the Metagalaxy is a stationary system of galaxies and other objects 
in Euclidean space, with steady-state mean values of parameters and 
no noticeable evolution for the past five billion years. Concerning 
the nature of the redshift, the unambiguous conclusion is that it 
arises in the process of light propagation in a physical vacuum. An 
explanation should apparently be sought in a local interaction be-
tween electromagnetic radiation and the physical vacuum. We 
believe that our conclusion regarding the stellar origin of the micro-
wave background radiation, as proven by the background observa-
tions, is a conclusive argument in favour of a steady-state universe 
model. 

Finally, it should be said that the standard cosmology was not 
without  its usefulness. For the first time, it put the question of the 
origin and evolution of the universe on a physical observational 
basis, developed methods for investigating the properties of space 
and formulated crucial problems for investigations and experimental 
testing. This was a necessary, although partly fantastic, stage in the 
development of ideas about the universe. On the basis of the meth-
ods, problems and ideas introduced by the standard cosmology, the 
next steps can now be carried out with new approaches; the results 

should be seen not as a total negation of accepted theory, but rather 
as a further search for truth. 
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