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A Non-Riemannian Universe 
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A brief historical introduction to unified field theory is given. Einstein’s principle of general covariance which led to 

General Relativity is contrasted with Weyl’s principle of projective invariance leading to a geometrical basis for elec-

tromagnetism. Projective invariance can bring quantum theory within the scope of geometrical theories as paths with 

different quantum numbers can be shown to be projectively related. 

An expression for a non-Riemannian affine connection is given and field laws are derived using the connection. It is 

shown that path integral solutions, when inserted into these field equations, yield characteristic equations with definite 

eigenvalues. The eigenvalues for the field equations are then related to the eigenvalues of the electromagnetic and gravi-

tational fields. The ratio of the latter can be given the physical interpretation of (e/m)2 for an elementary particle. 

The equations of the paths in a non-Riemannian space are written down. It is shown that there is a parallel solution 

which applies at all points along the path. This parallel solution makes explicit the form of the equations which does 

not conserve the vectors along the path. A simple transformation applied to the vectors does produce conserved vectors 

along the path, and enables a solution for the functional form of their evolution. This allows a redshift in the wave-

length of light received from great distances without implying a recession of the emitting source. The redshift would be 

dependent on the path of evolution and its environment. 

A conclusion is given that non-Riemannian geometry is capable of generating results of significance and interest at 

both the elementary particle and cosmological levels. Satisfactory answers to physical problems at both levels would be 

more likely if there were a coherent philosophical basis to the different branches of theoretical physics. 
   

1. Introduction 

Although gravitational phenomena, on the scale of the solar 
system up to the cosmological level, is held to be encompassed by 
the theory of General Relativity, there are domains of physical 
phenomena, like electromagnetism and quantum theory, which 
cannot be so encompassed. Physicists and astronomers have made a 
demarcation by saying that quantum theory covers the micro-
physical domain, general relativity covers the macro-physical do-
main and electromagnetism can exist in both. Quantum theorists 
have attempted to construct a theory of quantum electrodynamics 
and quantum gravity, but these have not been outstandingly success-
ful because of divergence problems. 

Weyl put forward a geometrical basis for the origin of the elec-
tromagnetic field in analogy with the way in which Einstein had 
constructed the General Theory from geometrical considerations 
(Weyl 1918). General covariance means that physical laws must be 
independent of the co-ordinate system within which they are formu-
lated. The implementation of this principle leads directly to the 
theory of gravitation embodied by General Relativity (Einstein 
1916). Weyl’s principle, that of projective invariance, means that 
physical laws must be invariant against any change in the scale or 
gauge system used to define lengths. In Riemannian geometry a 
length unit fixed at one place is determined everywhere. The equa-
tions of the paths in Riemannian geometry, and any other equation 
involving covariant derivatives, involve the Christoffel three-index 
symbols, which are not of tensorial nature. General Relativity uses a 
Riemannian connection consisting of these Christoffel three-index 

symbols. Weyl supplements this with a non-Riemannian connection 
which is of a tensorial nature (Eisenhart 1927). This dichotomy has 
never been satisfactorily resolved in unified field theories: gravita-
tional forces arise from the non-tensorial part of the connection, 
whereas electromagnetic forces arise from the tensorial part. 

Eddington took up Weyl’s proposal and generalized the connec-
tion still further, though it remained symmetric in the lower indices 
(Eddington 1923). The Weyl-Eddington theory was successful in 
providing a purely geometric origin for the electromagnetic field but 
did not produce an interaction between the electromagnetic field and 
the gravitational field. No such interaction has yet been observed 
experimentally but a unified field theory must have such an interac-
tion, or the two field theories are not formally unified. Einstein 
became convinced that a generalization of the Riemannian connec-
tion was necessary, and tried various forms which made the connec-
tion non-symmetric in the lower indices (Einstein, 1956). 
Schrödinger adopted a point of view which was similar to one of 
Einstein’s earlier proposals and developed a theory along similar 
lines (Schrödinger 1950). In the Einstein-Schrödinger theory the 
anti-symmetric part of the connection does not affect the geodesics, 
and to that extent is arbitrary (Hlavaty 1957). 

The source of both the gravitational and electromagnetic fields 
(mass and charge) exists at the quantum level of elementary part i-
cles, and these theories have not assimilated quantum theory. It had 
been shown (Veblen 1922) that a non-Riemannian addition to the 
Riemannian connection could yield the same paths by re-defining 
the length parameter along the path. This projective geometry can 
be used to give a geometrical interpretation to quantum theory, and 
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thus bring it within the scope of unified field theory. The path 
integral formulation of quantum theory (Feynman and Hibbs 1965) 
uses an exponential integral of the action to show the evolution of a 
field along a path. The integral is multiplied by a quantum number, 
and changing this quantum number will change the scale along the 
path. But it can be shown that a projective change to the affine 
connection will change the quantum number, and that the paths are 
therefore projectively related (Prasad 1975).  

Unified field theory seeks to construct elementary particles 
from the basic geometry constituting the theory. It is quite easy to 
choose a co-ordinate system in which the Christoffel three-index 
symbols are zero (Cartesian). The forces arising from geometry are 
zero in this system, and so the elementary particle would not exist. 
Particles cannot be allowed to exist or not, depending on the co-
ordinate system chosen, so that this suggests the use of a tensorial 
form for the affine connection. Many investigations have started 
with a Lagrangian function which embodies invariance principles and 
used a variation to derive the affine connection (Schrödinger 1950). 
However, it is possible to reverse this procedure and postulate a 
simple affine connection and then examine the resulting field laws. 
The affine connection used is closely related to those proposed by 
Eisenhart (Eisenhart 1956, papers II and IV), and generates both the 
gravitat ional and electromagnetic forces, thus avoiding the dichot-
omy referred to above. 

2. The Field Laws 

We take the non-Riemannian affine connection to be  

 jk
i i

jkL = k h  (1) 

where k i is a propagation vector and the unified field 

 jk jk jkh = g + f  (2) 

is the sum of the gravitational field tensor gjk, which is symmetric 

and the electromagnetic field tensor f jk, which is anti-symmetric. 
This connection, in addition to producing a mutual interaction 

of the electromagnetic and gravitational fields, also gives a self-
interaction of the gravitational field and a self-interaction of the 
electromagnetic field (Prasad 1981). 

Constructing the covariant derivative of the unified field with 
respect to the affine connection in equation (1), after taking sums 
and differences to separate out the symmetric and anti-symmetric 
parts, gives 
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and 
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for the mutual interaction equations and 

 
ij|k

m
m j i k

m
i m jk

g = k g g k g g− −  (5) 

and 
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m
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f = k f f k f f− −  (6) 

for the self-interaction equations. Taking the two equations obtained 
by symmetric permutation of the indices in each of these four 
equations results in a total of twelve interaction equations. For the 
path integral solutions to these equations we adopt for equations (3) 

 ij ij
i

ij
jg = g k f z   0b g exp ρ λ dz  (7) 

and for the equations (4) 

 ij ij
i

ij
jf = f k g z  0b g exp ρ λ dz  (8) 

For the equations (5) we adopt the path integral solutions 

 ij ij
i

ij
jg = g k g z  0b gexp ρ λ dz  (9) 

and for the equations (6) 

 ij ij
i

ij
jf = f k f z0b gexp ρ λ dz  (10) 

In these four solutions the tangent vector to the path is given 
by 

 λi
i

=
x

z

d

d
 (11) 

and dz is an element of the path length. Substituting these four 
solutions into the corresponding field equations (3), (4), (5), (6), and 
imposing the condition of self-consistency on the resulting equa-
tions gives, for the mutual interaction equations (3) and (4), the 
determinant equation  
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and for the self-interaction equations (5) and (6) we obtain the 
determinant equations 
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The eigenvalues coming from equations (12), (13), (14), respec-
tively are 

 i = , ,+ ,+ , , ,i =ρ 0 0 3 3 3 3− − 1 ,2 , . . , 6  (15) 

 ρ j = , j =1 1 2 7 8 9, , , ,−  (16) 

 k = , k=ρ − − +1 1 2 1 0 1 1 1 2, , , ,  (17) 

By choosing particular paths for the evolution of the fields 
(Prasad 1993), we can justify projective changes, equivalent to a 
superposition of states in quantum theory, which enable the quantum 
numbers for the field variables to be written in the form 

 α α αρ α= a + b ,    =3 1,2,3,4  (18) 

where the coefficients a and b are positive or negative integers or 
zero . Contracting the field equations (3), (4), (5), (6), above gives 
either one or other of the two equations 

 ( ) ( ) ( )G + + = ,     , =α β γρ ν ν β γ0 1,2,3,4  (19) 
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 ( ) ( ) ( )F+ + = ,     , =α β γρ λ λ β γ0 1,2,3,4  (20) 

These two equations establish a link between the quantum num-
bers attached to the field variables and the eigenvalues for the elec-
tromagnetic field given by 

 i m

jm
( )
i

( ) i
j

( )
if f k = k ,   =α α αλ δ α 1,2,3,4  (21) 

and for the gravitational field given by 

 i m

jm
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i

( ) i
j

( )
ig g k = k ,     =α α αν δ α 1,2,3,4  (22) 

Their ratio  

 
− ( )

( )

2=α

α

λ
ν

µ  (23) 

can be given the physical interpretation of (e/m)2 for an elementary 
particle. 

3. The Equations of the Paths 

The equations of the paths can yield formulae which demon-
strate an evolution along the path of the vectors which define the 
path. Taking the covariant derivative of the tangent vector and the 
propagation vector with respect to the connection in equation (1) 
gives 

  |j
i j i m

m j
j i= k h = kλ λ λ λ φ  (24) 

  |j
i j i m

m j
j ik = k k h = kλ λ ψ  (25) 

These two equations have a parallel solution and a non-parallel 
solution. For present purposes we require only the former 

 i i= kλ ψ φ  (26) 

The scalars, which then become 

 φ λ λ ψ λ= g , = k gm
m j

j m
m j

j , (27) 

cannot be zero, but may be very small. Using this solution in equa-
tions (24) and (25) gives 

  | j
i j i=λ λ λ ψ  (28) 

  |j
i j ik = kλ ψ  (29) 

Writing these two equations in terms of intrinsic derivatives 
gives 

 
d

d s
=i iλ λ ψc h  (30) 

 
d

d s
k = ki ic h ψ  (31) 

It is seen that neither of these vectors is conserved along the path. 
However, by introducing the variables 

 i i= sλ λ ψexp −z de j  (32) 

 i ik = k se x p −zψde j  (33) 

the equations (28) and (29) become 

 |j
i j  =  0λ λ  (34) 

  | j
i jk  = 0λ  (35) 

which written in terms of intrinsic derivatives are 

 
d

d s
=iλe j 0  (36) 

 
d

d s
k =ie j 0  (37) 

These two vectors are conserved along the path and have the 
solutions 

 i
o
i= =λ λ c o n s t a n t  (38) 

 i
o
ik k == c o n s t a n t  (39) 

The evolution of the vectors along the path is therefore given, 
from equations (32) and (33), by  

 i
o
i= sλ λ ψe x p dze j  (40) 

 i
o
ik = k se x p ψdze j  (41) 

where the parallel solution (26) holds at all points along the path. If 
the wavelength is taken as being proportional to the inverse of the 
associated wave vector, then the wavelength along the path is given 
by 

 λ λ ψ= do s  e x p −ze j  (42) 

As the redshifted wavelength increases with distance, this indi-
cates a negative value for the integral along the path. No recession 
is implied for the emitting source. The amount of redshift depends 
upon the path and its environment. The integrand, given in equation 
(27) is a scalar which depends on the value of the gravitational field 
along the path of evolution. If the scalars given in equation (27) are 
zero, then there is no evolution and no redshift. If the scalars are 
not zero, then the redshift can be related to the integral along the 
path of evolution. The mass of the photon is not related to these 
scalars, but to the eigenvalue in equation (22). 

4. Conclusions 

The field interaction equations, outlined in section 2, show that 
it is possible to generate discrete states with differing mass and 
identifying quantum numbers from purely geometrical considera-
tions. That this result has been obtained within the framework of 
unified field theory investigations justifies regarding it as the initial 
stages of a possible theory of elementary particles. The parallel 
solution to the equations of the paths, outlined in section 3, shows 
an evolution along a path of the vectors characterizing that path. 
This provides a possible interpretation for the redshift in light 
received from great distances which does not imply a recession of 
the emitting source. It is of significance that it is the same affine 
connection, and therefore the same geometry, which has produced 
these two descriptions. Once the affine connection has been chosen 
the field equations and the equations of the paths are uniquely de-
termined apart from any projective changes.  

These two examples show that non-Riemannian geometry can 
be used to derive results of relevance in physical theory. Of course 
this is a long way form proving that we live in a non-Riemannian 
universe. Nevertheless they show that the demarcation of the un i-
verse into domains of application is not necessarily valid. That a 
single geometrical structure can apply at the level of elementary 
particles and at cosmological distances is, therefore, suggested but 
not proved. The macro- and micro-physical worlds are linked, as is 
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shown by the relation between the dimensionless constants that can 
be constructed. The implication is that the geometry of the large-
scale universe is linked directly to the geometry of the small-scale 
world of elementary part icles.  

If we identify different quantum numbers attached to the same 
path integral with a different scale, or gauge system, along the path, 
then quantum theory can be given an interpretation within projec-
tive geometry. This would enable all three branches of theoretical 
physics to have a geometrical interpretation. The compartmentali-
zation of physical theory leads to inconsistent treatments of physi-
cal problems, such as quantum electrodynamics as compared with 
quantum gravity. At present, the philosophical basis of each branch, 
gravitational theory, electromagnetism and quantum theory, is 
incompatible with the others. Theoretical physics cannot be classed 
as a coherent philosophical system while its branches sustain incom-
patible philosophical viewpoints. If these three branches could be re-
formulated within a unified and coherent geometrical framework, 
then there would be a greater chance of obtaining satisfactory an-
swers to the philosophical and physical quest ions we may pose. 

References 
Eddington, A.S., 1923. The Mathematical Theory of Relativity (Cambridge Univer-

sity Press, reprinted 1965). 
Einstein, A., 1916. The Foundation of the General Theory of Relativity. Reprinted 

in: The Principle of Relativity (Dover Publications Inc.)  
Einstein, A., 1956. The Meaning of Relativity (Princeton University Press) 

Appendix II. 
Eisenhart, L.P., 1927. Non-Riemannian Geometry (American Mathematical 

Society, reprinted 1964). 
Eisenhart, L.P., 1956. A Unified Theory of General Relativity of Gravitation and 

Electromagnetism I,II,III,IV; Proceedings of the National Academy of Sci-
ences, 42: 249, 646, 878; 43: 333. 

Feynman, R.P. and Hibbs, A.R., 1965. Quantum Mechanics and Path Integrals 
(McGraw-Hill Book Co mpany Inc.). 

Hlavaty, V., 1957. Geometry of Einstein’s Unified Field Theory (P.Noordhoff Ltd., 

Groningen). 
Prasad, R., 1975. Unified Field Theory (Geometrica Press, London). 
Prasad, R., 1981. Fundamental Constants (Geometrica Press, London). 
Prasad, R., 1993. Interacting Fields (Geometrica Press, London). 
Schrödinger, E., 1950. Space-Time Structure (Cambridge University Press, re-

printed 1963). 
Veblen, O., 1922. Projective and Affine Geometry of Paths, Proceedings of the 

National Academy of Sciences 8: 347. 
Weyl, H., 1918. Space-Time-Matter (Reprinted by Dover Publications Inc.1952, 

New York). 

 


