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The notions of time in the theories of Newton and Einstein are reviewed so that the difficulty 
which impedes the unification of quantum mechanics (QM) and general relativity (GR) is 
clarified. It is seen that GR by itself contains an intrinsic difficulty relating to the definition of lo-
cal clocks, as well as that GR still requires a kind of absolute that can serve as an objective refer-
ence standard. We present a new understanding of time, which gives a consistent definition of a 
local time associated with each local system in a quantum mechanical way, so that it serves the 
requirements of both GR as well as QM. As a consequence, QM and GR are reconciled while 
preserving the current mathematical formulations of both theories.   

I.  Introduction 

Previous papers of Kitada (1994a,b) proposed an ap-
proach to the problem of overcoming the apparent in-
consistency of non-relativistic quantum mechanics and 
general relativity. The purpose of this paper is to explain 
the structure and background of that approach, with 
emphasis on a certain philosophical problem relating to 
the notion of time. 

The inconsistency of quantum mechanics and gen-
eral relativity, when looked at mathematically, seems at 
first sight obvious and inescapable from the fact that the 
geometry of quantum mechanics is Euclidean, while 
general relativity employs a curved, Riemannian ge-
ometry. 

Kitada (1994a) proposed to overcome the apparent 
mathematical incommensurability of the two geome-
tries is by “orthogonalizing” them; i.e. by expressing 
them as a direct product X R× 6 , where X  represents 
the curved Riemannian manifold associated with gen-
eral relativity, and R6  (or in the usual space-time con-
text, R4 ) denotes the Euclidean space of phase space co-
ordinates ( , )x v  of non-relativistic quantum mechanics. 
As two components of the orthogonalized total space 
X R× 6 , the Riemannian space X  and the Euclidean 
space R6  are compatible without contradiction.  

General relativity and quantum mechanics are the 
two most important and comprehensive theories of con-
temporary physics. By “comprehensive” we mean that 
both theories claim to apply to everything. In practice it 
might seem that these two theories describe two differ-
ent physical domains, since the most striking applica-

tions of quantum mechanics occur when we consider 
things that are extremely tiny in relation to ourselves—
things like electrons and photons—while the most 
striking applications of general relativity occur in con-
nection with extremely large and dense concentrations 
of matter and enormous spatio-temporal magnitudes. 
But, in principle, every physical thing must be capable 
of being described adequately by both theories, at least 
this is what the theories claim. And there are certain 
cases—of particular interest in recent cosmology and 
astrophysics—where the extremes of density that are the 
particular province of general relativity coincide with 
the extremes of minuteness that are the special province 
of quantum mechanics. In those situations, the physi-
cist is compelled to face a problem which is present in 
the background of science all the time but which can 
otherwise be evaded without practical consequence: the 
fact, namely, that these two comprehensive theoretical 
structures appear to be mutually incompatible, that they 
seem to involve different—and contradictory—
assumptions about the nature of space, time and causal-
ity. 

Our intention in this paper is to outline an approach 
to the understanding of general relativity and quantum 
mechanics in which these theories will appear as dis-
tinct but systematically coordinated perspectives on the 
same reality. The orthogonalization of the spatial foun-
dations of the two theories allows us to speak of the two 
theories as distinct. To express the possibility of their 
systematic coordination will require a more extended 
analysis of the nature of time. 

In brief, we can express our approach as follows: 
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1. We begin by distinguishing the notion of a local sys-
tem consisting of a finite number of particles. Here 
we mean by “local” that the positions of all particles 
in a local system are understood as defined with re-
spect to the same reference frame. 

2. In so far as the particles comprised in this local sys-
tem are understood locally, we note that these parti-
cles are describable only in terms of quantum me-
chanics. In other words, to the extent that we con-
sider the particles solely within the local reference 
frame, these particles have only quantum mechani-
cal properties, and cannot be described as classical 
particles in accordance with general relativity. 

3. Next we consider the center of mass of a local sys-
tem. Although the local system is considered as 
composed of particles which—as local—have only 
quantum mechanical properties, in our orthogonal 
approach we posit that each point ( , )t x  in the Rie-
mannian manifold X is correlated to the center of 
mass of some local system. Therefore, in our ap-
proach, the classical particles whose behavior is de-
scribed by the general theory of relativity are not un-
derstood as identical with the “quantum mechani-
cal” particles inhabiting the local system—rather the 
classical particles are understood as precisely corre-
lated only with the centers of mass of the local sys-
tems. 

4. It is important to recognize that the distinction we 
are making between local systems and classical par-
ticles which are the centers of mass of local systems 
is not a simple distinction of inclusion/exclusion. 
For example, we may consider a local system con-
taining some set of particles, and within that set of 
particles we may identify a number of subordinate 
“sublocal” systems. It would seem that the centers of 
mass of these sublocal systems must be “inside” the 
local system as originally defined, but the sublocal 
system is at the same time a local system, and we 
have said that the centers of mass of local systems are 
correlated with classical particles whose behavior is 
to be described in terms of relativity theory. 
 
The paradox is avoided by noting that the distinction 

we are making is a distinction of reference frame, not a 
distinction of inclusion or exclusion. When we speak of 
classical particles (or centers of mass) we are speaking of 
the particle in terms of the observer’s time, which is un-
derstood as distinct from that of the particle observed. 
To the extent that the time of the system L itself is 
adopted as the reference time, then we are speaking of 
the behavior of a local system whose development must 
be described in terms of quantum mechanics.* 

                                                                 
* The mathematical details of the relationship between the local 

time and the observer’s time will be set forth in Part II, after we 
have developed our notion of local times in section VI of this 
paper. 

It is our contention that time necessarily has two 
quite different aspects, in relativity theory, on the one 
hand, and in quantum theory on the other, and the in-
tention of this paper is to show that these two aspects of 
time are in fact complementary and that the notion of 
local time, which we have associated with the quantum 
mechanical local system, is not only the main ingredi-
ent of a unification of quantum and relativity theories, 
but that this actually is necessary to constituting the 
time of relativity theory. 

The “orthogonalization” of the geometries of quan-
tum mechanics and general relativity does not by itself 
specify the nature of the relationship between them. It 
simply gives us a way of representing them as inde-
pendent but complementary. The nature of that rela-
tionship, and the value of this form of representation, 
will come to light in Part II, after we have outlined our 
notion of local time below. 

Before stating our notion of local time, it will be use-
ful to show how this notion relates to the apparent in-
consistency of quantum mechanics and general relativ-
ity.  

II. Time in Quantum Mechanics 

That the difficulty of reconciling quantum mechan-
ics and general relativity is connected to the question of 
time is now generally recognized (see especially Isham 
1993, Unruh 1993 and Hartle 1993). What is central is 
the divergent relationship of these two branches of 
modern physics to their common Newtonian heritage. 

At the beginning of modern physics, Isaac Newton 
specified his notion of time in the Principia, as follows 
(1962, p. 6): 

Absolute, true, and mathematical time, of itself, and from 
its own nature, flows equably without relation to anything 
external, and by another name is called duration: relative, 
apparent, and common time, is some sensible and external 
(whether accurate or unequable) measure of duration by 
the means of motion, which is commonly used instead of 
true time; such as an hour, a day, a month, a year. 

Also in pp. 7-8, he states: 

Absolute time, in astronomy, is distinguished from rela-
tive, by the equation or correction of the apparent time. For 
the natural days are truly unequal, though they are com-
monly considered as equal, and used for a measure of time; 
astronomers correct this inequality that they may measure 
the celestial motions by a more accurate time. It may be, 
that there is no such thing as an equable motion, whereby 
time may be accurately measured. All motions may be ac-
celerated and retarded, but the flowing of absolute time is 
not liable to any change. The duration or perseverance of 
the existence of things remains the same, whether the mo-
tions are swift or slow, or none at all: and therefore this 
duration ought to be distinguished from what are only 
sensible measures thereof; and from which we deduce it, 
by means of the astronomical equation. The necessity of 
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this equation, for determining the times of a phenomenon, 
is evinced as well from the experiments of the pendulum 
clock, as by eclipses of the satellites of Jupiter. 

The main point of this famous passage is to assert the 
existence of an absolute, true time. 

However, it is important to note that Newton asserts 
the existence of his absolute time by means of a distinc-
tion. There is absolute time, which flows without refer-
ence to anything external, and then there is relative, ap-
parent, or common time, which is a measure of dura-
tion made by comparison of motions. Not only that, but 
although there may be no absolutely regular motion by 
means of which absolute time may be accurately repre-
sented, absolute time is an ideal standard by means of 
which relative or common time is “corrected.” 

Einstein’s theory of relativity, as is well-known, 
sharply contrasts with Newton precisely on the ques-
tion of time and space: Einstein’s theory makes no ref-
erence to either absolute time or absolute space. Ein-
stein retains the relative or common time which can be 
measured and determined by means of actual clocks as-
sociated with each local observer, but he completely jet-
tisons Newton’s notion of an absolute time flowing eq-
uably for all observers. 

But precisely in this respect, quantum mechanics 
stands in sharp contrast to relativity—especially the 
general theory of relativity. In quantum mechanics, 
unlike relativity, the time parameter continues to be 
treated in an essentially Newtonian manner. 

That time plays a special, absolute role in quantum 
mechanics is evident in Schrödinger equation (at least 
as customarily interpreted): 
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Thus the solution of the Schrödinger equation is given 
by 

 ψ ψ( , ) exp[ / ] .x t itH= − h 0  

In this context, the time t appears to be given a priori, and 
then the motion ψ ( , )x t  of the system is derived from 
the Schrödinger equation by using the time evolution 
exp[ ]− itH h  of the system.† 

The fact that time plays a special role in quantum 
mechanics may also be seen by looking at the alterna-
tive formulation of quantum mechanics by Feynman 
(1948; cf. also Kitada 1980 for the relation between clas-

                                                                 
† See (Kitada 1994a) and sections IV and V below for a different 

interpretation of this solution, which will supply the key to our 
notion of a ‘local clock’. 

sical mechanics and quantum mechanics as formulated 
by Feynman 1948). 

Because in non-relativistic quantum mechanics the 
time evolution of a system is governed by the 
Schrödinger equation, space and time in quantum me-
chanics are intrinsically Newtonian in the sense that 
the form of the Schrödinger equation is not invariant 
with respect to the relativistic transformation of coordi-
nates.  

III. What does an adequate notion of time re-
quire? 

We have indicated that the primary source of the in-
consistency between QM and GR is to be found in their 
divergent and apparently incompatible ways of treating 
time. Einstein pointedly rejects Newton’s idea of abso-
lute time and treats time as something which is locally 
defined by means of clocks which are at the same time 
physical objects. In non-relativistic QM, on the other 
hand, the role of time is essentially Newtonian, in the 
sense that time is an external, background parameter. 

Newton’s statements about absolute time and space 
were controversial from the time they were first pub-
lished, and Einstein was by no means the first to call 
them into question. Einstein seems to have considered 
the Newtonian absolutes as purely metaphysical in na-
ture, having no direct bearing on actual physical de-
scription—even for classical mechanics. In his own 
presentations Einstein is consistently operational. The 
description of spatial relations, prior to the introduction 
of GR, is explained as involving the specification of 
places on rigid reference bodies and spatial co-ordinate 
systems are understood as convenient, abstract mathe-
matical substitutes for such rigid bodies of reference. 
Time is understood, not as some absolute parameter, 
but as something based on the readings of identically 
constructed clocks held in the hands of different observ-
ers, who match up the “ticks” of their clocks with the 
observed positions of the various objects which they are 
observing. 

In short, it looks as if Einstein considered the New-
tonian absolutes completely superfluous and thought 
that they could be disposed of with no consequence, and 
in fact much gain in scientific rigor. However, once we 
inquire into the epistemological function of the New-
tonian absolutes we may discover that it is not in fact 
quite so easy to get rid of them without any conse-
quence. 

Clearly, the epistemological function of the Newto-
nian absolutes is to serve as a common reference stan-
dard. The idea is that there must be something which is 
the same for all observers, in terms of which all can be 
described. To that extent, it is clear that in the physics of 
Einstein, Newton’s absolutes have not actually been 
removed—they have only been disguised. So the no-
tions of a rigid body and a “standard clock” are essen-
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tially surrogates for absolute space and time. This can be 
seen to some extent by comparing Weyl’s definition of a 
clock with Newton’s definition of absolute time: 

Weyl (1952 p.7) has this to say on the question of 
clocks and the measurement of time: 

To be able to apply mathematical conceptions to questions 
of Time we must postulate that it is theoretically possible 
to fix in Time, to any order of accuracy, an absolutely rig-
orous now (present) as a point of Time—i.e. to be able 
to indicate points of time, one of which will always be the 
earlier and the other the later. The following principle will 
hold for this “order-relation”. If A is earlier than B and B 
is earlier than C, then A is earlier than C. Each two 
points of Time, A and B, of which A is the earlier, mark 
off a length of time; this includes every point which is 
later than A and earlier than B. The fact that Time is a 
form of our stream of experience is expressed in the idea of 
equality: the empirical content which fills the length of 
Time AB can in itself be put into any other time without 
being in any way different from what it is. The length of 
time which it would then occupy is equal to the distance 
AB. This, with the help of the principle of causality, gives 
us the following objective criterion in physics for equal 
lengths of time. If an absolutely isolated physical system 
(i.e. one not subject to external influences) reverts once 
again to exactly the same state as that in which it was at 
some earlier instant, then the same succession of states will 
be repeated in time and the whole series of events will con-
stitute a cycle. In general such a system is called a clock. 
Each period of the cycle then lasts equally long. 

In particular note his reference to “...an absolutely iso-
lated physical system (i.e. one not subject to external in-
fluences),” and compare it to Newton’s statement that, 
“Absolute, true, and mathematical time, of itself, and 
from its own nature, flows equably without relation to 
anything external...” Clearly, Newton’s absolute time is 
unobservable—and from the standpoint of empirical 
science this is a serious fault which makes it unfit to 
serve as a standard of measurement. But in fact Weyl’s 
clock—defined as an absolutely isolated physical sys-
tem—suffers from exactly the same problem: that 
which allows it to be accurate makes it at the same time 
unobservable. Indeed, strictly speaking, Weyl’s clock 
must be exactly the same thing as Newton’s, since the 
only absolutely isolated physical system one can imag-
ine is the universe itself. 

The discovery of the finite velocity of light revealed 
that it is not possible to provide a univocal definition of 
time with respect to bodies of reference that are in rela-
tive motion. One consequence of this discovery, as Ein-
stein observes, was to expose the previously unnoticed 
interdependence of space and time. That is to say, prior 
to the advent of relativity, points in space and instants of 
time were taken to be absolute realities—and time and 
space themselves were understood as completely differ-
ent and independent things. In the special theory of 

relativity, Newton’s absolutes are reorganized as fol-
lows: 

 
1. We stipulate that the velocity of light is not only fi-

nite, but that it is an absolute constant—i.e. that its 
velocity in a vacuum is the same for all observers, 
independent of relative motion.  

2. We stipulate that we will confine our attention to in-
ertial reference frames—i.e. to bodies whose rate of 
relative motion is uniform. 

3. And we continue to presuppose the absolutes of rigid 
transport and standard clocks. 

 
Given these assumptions and qualifications, as Ein-

stein observes, what has “physical reality” is neither 
points in space nor instants in time, but events, which 
are understood as specifications of four numbers in a 
space-time manifold. Accordingly, he observes,  

There is no absolute (independent of the space of refer-
ence) relation in space, and no absolute relation in time 
between two events, but there is an absolute (independent 
of the space of reference) relation in space and time, as will 
appear in the sequel. (1922, p. 30f.) 

And in the following lecture he is equally clear about 
the fact that something like the Newtonian absolute is 
retained in the special theory of relativity (Einstein 
1922, p.55): 

The principle of inertia, in particular, seems to compel us 
to ascribe physically objective properties to the space-time 
continuum. Just as it was consistent from the Newtonian 
standpoint to make both the statements, tempus est abso-
lutum, spatium est absolutum, so from the standpoint of 
the special theory of relativity we must say, continuum 
spatii et temporis est absolutum. In this latter statement 
absolutum means not only “physically real,” but also “in-
dependent in its physical properties, having a physical ef-
fect, but not itself influenced by physical conditions.” 

But it is important that this paragraph occurs on the 
first page of the lecture in which Einstein is beginning 
to introduce the General Theory of Relativity (GR)—
by contrasting it with the Special Theory. Because the 
point of this paragraph is that precisely that principle 
which seems to compel us to treat the space-time con-
tinuum as physically real and absolute—precisely that 
principle is what loses its privileged status under GR. If 
we attempt to generalize the theory of relativity to allow 
the description of the behavior of bodies insofar as they 
are in mutually accelerated reference frames, we can no 
longer hope to describe this behavior accurately by 
means of coordinate systems referring to rigid reference 
bodies, nor can we assume that two clocks in different 
locations, both of which are at rest with respect to one 
reference body will give uniform readings when con-
sidered with respect to another reference body which is 
in non-uniform motion with respect to the first. 



Page 42 APEIRON Vol. 3 Nr. 2 April 1996 

Our contention, therefore, is that it is only with the 
advent of GR that Einstein is forced to fully abandon 
the Newtonian absolute (understood in its 4-
dimensional Minkowski version). But it is precisely at 
this point in the development of Einstein’s theory that 
one discovers the need for what, in the following sec-
tion, we call “the localized absolute.”  

That is to say, as soon as Einstein attempts to move 
beyond the restrictions of the special theory of relativity, 
two problems occur at the same time: One is that he is 
confronted by a need to give a consistent definition of a 
local clock. The other is that he needs to find or create 
something that can serve as an objective reference stan-
dard (which, as noted above, was one of the main in-
tended—although not fulfilled—functions of Newton’s 
notion of absolute time). But, paradoxical as it may 
seem, the abandonment of the rigidity of Minkowskian 
space-time means that the desired objective reference 
standard must be identified, not with some global frame 
of reference within which the local system is situated, 
but with the local system itself—insofar as the local sys-
tem is taken as the system. 

We resolve these two problems, i.e. the need for a 
properly defined local clock and an objective reference 
standard, by introducing the notion of the local time of 
a local system on the basis of a total universe, which is 
introduced as an objective reference standard. Our no-
tion of local time, on the one hand, gives a consistent 
definition of local systems, each of which can accom-
modate a proper clock that serves the requirement of 
GR. We associate a local system with each classical 
point ( , )t x  of the 4 dimensional Riemannian manifold 
X , so that the local system can accommodate a local 
clock inside itself which describes the local time at the 
center of mass of the local system. 

On the other hand, we will show that it is possible to 
construct a concept of a “total universe” which will 
serve as the ground for an objective reference stan-
dard—without, however, violating the strictures of Ein-
stein against an absolute reference frame in the classical 
Newtonian sense. 

We represent the total universe as an eigenstate of a 
Hamiltonian of infinite degrees of freedom. This allows 
us to define the local time of each local system with fi-
nite degrees of freedom inside the total universe. We 
shall discuss this point in sections IV and V in detail.  

The local system L  at a classical point ( , )t x  in X  
has an internal structure which is independent of the 
classical mechanical world outside the local system L , 
as we will see in later sections. The internal structure of 
the local system L  is described by quantum mechanics 
in our formulation. Since the local system L  is inde-
pendent of the external classical world, this assumption 
of our formulation does not lead to any contradiction as 
we shall see later. Furthermore, in the local system L  a 
local time can be defined as a quantum mechanical no-
tion associated with that local system L  without requir-

ing that time be defined as the problematic point-
specific notion we encountered in Einstein’s formula-
tion of GR. This local time as defined above—specific 
to each local system—also gives us a local time for the 
center of mass of L , thus satisfying the requirement of 
GR for a definition of local time valid at a particular 
point. Thus we can regard the centers of mass of various 
local systems as classical particles obeying GR, so that 
we can recover GR in this formulation of local systems 
and local times. 

In this way the formulation outlined above illus-
trates the possibility of understanding QM and GR as 
mutually independent, but at the same time mutually 
complementary, such that each supports the other, sup-
plying and supporting features that cannot be ade-
quately defined within either theory by itself. QM pro-
vides the internal clock which recovers the local clock 
for GR, whose realization has been the intrinsic diffi-
culty of GR from its very beginning as we have seen 
(see also section V below). 

As a basis for this approach, we define, in the next 
section, the local clock of a local system as a measure of 
motion inside the local system. Our notion of local time 
will give us, as we explain below, a localized version of 
Newton’s absolute time, which is presupposed by quan-
tum mechanics, without becoming entangled in con-
flict with the theory of relativity. 

IV. Defining the local clock: an alternative no-
tion of time 

In this section we begin the presentation—to be con-
tinued in part II of this article—of an outline of our the-
ory of local time, which we contend offers a possible 
way to unify Quantum Mechanics with General Rela-
tivity.  

As noted in Kitada (1994a, p.283), the empirical sci-
entist’s notion of time in actual practice is necessarily a lo-
cal one. That is to say, time does not appear to us until it 
is measured by some equipment. In this respect the 
observation of time is quite different from the 
observation of positions and motions, which are 
perceived directly by our senses. Even when we use a 
tool, such as a measuring stick, to measure the length of 
a thing, what we actually do is to look and see which 
markings on the scale of the ruler coincide with either 
extreme of the thing being measured. The fundamental 
act of observation here is the perception of this 
coincidence (of the ruler-mark with the edge of the 
thing). If we consider how time is measured by means 
of clocks, we notice that the measurement process is 
actually a process of comparing the motions and 
positions of certain bodies, so that it is possible to 
describe the measurement of time (somewhat 
abstractly) as a quotient of certain positions and 
velocities. With an analog clock, time is measured by 
examining the motion of its hands. We look at the 
hands, and recognize that one second passes if the sec-
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ond hand “moves” one “scale”. We do not measure time 
directly by our senses, but we know time by perceiving 
the positions and motions of the hands of clocks. In this 
sense time is neither a quantity nor a frame given a pri-
ori. What exists first are the positions and movements of 
the bodies relative to our own position. The perception 
of the positions and motions indicates an introduction 
of the common parameter in each system of bodies con-
sisting of a finite number of particles. This parameter is 
called time and it is a local notion by nature‡. 

In QM, however, as we noted above in section II, 
the notion of time is quite different from that of Ein-
stein. Obviously, as experimenters, quantum physicists 
use clocks in the same way that relativity physicists do, 
so that in practice they must implicitly share the under-
standing of time as a local notion. But in theory the 
Schrödinger equation has traditionally been understood 
to define the evolution of the particle states of a system 
with respect to an externally-given, “Newtonian,” time 
parameter, which means that for QM the clocks by 
which time is measured are understood as if they were 
completely external to the system being investigated—
in sharp contrast to GR, where the fact that the clock is 
itself an object within the system is essential to the 
working of the theory. However, in recent years a group 
of mathematical physicists specializing in the study of 
Schrödinger wave operators in many-body systems, in-
cluding Enss and Kitada, have made important strides 
in understanding the asymptotic completeness of ob-
servables in such systems. Building on the work of 
Enss, Kitada has shown that it is possible to re-interpret 
the role of the time parameter in the Schrödinger equa-
tion. Specifically, it is possible to treat the t in that equa-
tion, not as an observable, but as a dependent variable, 
whose specific meaning and value are derived, subject 
to appropriate assumptions, from a mathematical con-
sideration based on the velocity and momentum of the 
particles of the system—which actually are observable. 
The mathematical reasoning which accomplishes this 
result is fairly technical—it will be summarized below 
and the reader is referred to Kitada (1994a), etc. for a 
more formal presentation of the argument. However, it 
is possible to state briefly here that this analysis, by in-
verting the customary relationship between the time 
parameter and the observation of the velocities and posi-
tions of particles as these things are interpreted by the 
Schrödinger equation, actually brings the understand-
ing of time in QM into a much closer and more intelli-
gible relation to that of GR than it had before. That is to 
say, the result of Kitada (1994a) is to show that time 
may be understood in QM, no longer as an external 

                                                                 
‡ It should be noted here that the foregoing observations concern-

ing the nature of time measurement are in full agreement with 
Einstein, for it is clear that Einstein’s understanding of time is 
completely “operational,” as may be observed from the fact Ein-
stein speaks primarily of clocks, not of time as a thing existing in 
itself. 

“Newtonian” parameter, but as a certain expression of 
the relative motions and positions of the particles mak-
ing up the local system. Thus we show that time may be 
understood as rooted in the internal motions of a local 
system in QM, just as it is in GR. At the same time, 
however, the theorem of Enss as interpreted and ex-
tended by Kitada (1994a) allows us to explain why this 
“local time” must nonetheless appear as if it were an ab-
solute, Newtonian time, independent of which point is 
selected within the local system and the same for all. 
And we will show later that it is precisely because it pos-
sesses this feature that the “local clock,” as we have de-
fined it in the language of QM, provides the required 
logical foundation for the definition of local time in 
GR. 

We are now in a position to define our notion of lo-
cal time. (We remark that the following exposition is a 
rather intuitive definition, and a precise formulation 
needs some mathematical notions and notations as de-
scribed in sections 4 and 5, pp. 286-288 of Kitada 
1994a.) Let L be a local system consisting of N number 
of particles 1, 2, ..., N. Then there can be defined the po-
sition vectors x x xN1 2, , ... ,  and momentum vectors 
p m v p m v p m vN N N1 1 1 2 2 2= = =, , ..., , where m j  is the 

mass of the j-th particle so that the correspondent quan-
tum mechanical selfadjoint operators 
X X X Xj j j j= ( , , )1 2 3  and P P P Pj j j j= ( , , )1 2 3  in a Hil-

bert space H n nL R= 2 3( )  of N n= + 1  particles, satisfy 
the so-called canonical commutation relation. (This 
statement is axiom 2 of Kitada 1994a.) Then the local 
time tL  associated with the local system L is defined as a 
quotient of position x j  by velocity v p mj j j= /  

 t
x

v
L

j

j

= . (1) 

Here we note that the right hand side of this definition 
looks as if it depends on the number j. But it is known 
(Enss 1986) that it does not depend on j, if one defines 
the right hand side as in Kitada (1994a, sections 4-5) 
(see axiom 3, Theorem 1, and Definition 3 there, and 
section V of part II for more precise descriptions). Thus 
local time is defined as a measure of motion inside each 
local system.  

We note that we have defined time only for local sys-
tems as a parameter of motions, which is abstracted 
from the internal motions inside the local systems. The 
fact that the universe as a whole is not a local system 
thus makes it reasonable to postulate that there is no 
time associated with the total universe. This postulate is 
axiom 1 of Kitada (1994a). This distinction between lo-
cal systems and the total universe is seen more clearly 
when one notices that the local Hamiltonians describ-
ing local systems and the total Hamiltonian used to de-
fine the total universe differ in that the former is of fi-
nite degrees of freedom while the latter is of infinite de-
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grees of freedom, and that the local Hamiltonians are no 
more than convenient approximations to the total 
Hamiltonian, used instead of the true, total Hamilto-
nian when one observes the outside. The fact that each 
of the local Hamiltonians of finite degrees of freedom is 
an approximation, but only an approximation, of the to-
tal Hamiltonian of infinite degrees of freedom has an 
interesting and important consequence: Namely it al-
lows each local system to vary, so that local motions can 
occur and local clocks can be defined—even though the 
total universe, consisting of an infinite number of parti-
cles is stationary§, as we have postulated. 

The stationary nature of the total universe will be 
described in section V of Part II in a more precise way. 
Any local system of a finite number of particles, how-
ever, can be nonstationary, and can vary inside itself, as 
a consequence of the variation outside the local system, 
which compensates for the change inside the local sys-
tem, so that the stationary nature of the total universe is 
preserved. 

Because of the fact that the relationship expressed in 
formula (1) has been shown to be independent of the 
particular choice of particle number, this quotient can 
be understood to hold approximately in the same way 
for any particle in the given local system—and precisely 
for this reason, this can be understood as defining a 
common parameter tL  associated with the local system 
L itself, rather than with any particular point in it, and 
which we can, therefore, define as the “local time” of the 
local system. Thus the demonstration, due to Enss, that 
this quotient holds independent of the choice of particle 
number j, is remarkable in that it not only gives us a 
way of understanding how a definition of time can be 
derived from the relative motions of particles within a 
local system, but at the same time it shows us that this 
parameter, because it is (approximately) independent of 
the particular choice of particle, can be treated as if it ac-
tually existed externally, independent of the motions on 
which it is based. 

Nevertheless, once a local time is identified by the 
formula (1), as a measure of motion, as t x v=  in 

each local system, our definition of local times is a 
specification or a clarification of the ‘relative, apparent, 
and common time’ measured ‘by the means of motion, 
which is used’ ‘instead of true time’ in Newton’s sense 
(see the first quotation from Principia, Newton 1962). 
And our definition of local times is also a realization of 
Einstein’s assumption that the nature of time is essen-
tially local, since we have defined the local time only for 
each local system consisting of a finite number of parti-
cles, while for the universe as a whole no local time is 
defined. 

                                                                 
§ The word “stationary” here is the one used in mathematical 

physics to express an eigenstate of a Hamiltonian as a “stationary 
state.” 

We note that there is a considerable difference be-
tween our definition of local times and the conventional 
understanding of the notion of time. The common fea-
ture of the conventional understanding of time, includ-
ing Newton’s definition of absolute time, is that time is 
something existing or given a priori, independently of 
any of our activities, e.g. activities of observation. In our 
definition, time is not an a priori existence, but a conven-
ient measure of motions inside each local system. Our 
definition of local times mentioned above is that a local 
time is a clock—which measures, not time, but the mo-
tions of the local system. Unlike the conventional un-
derstanding where time is given a priori, the local clock 
does not measure time, but it is time. Further, as we will 
state in section V, the proper clock is the local system 
itself, and it is a necessary manifestation of that local 
system. In this sense, “clocking” is the natural activity 
of any local system. It follows from this that to be an ex-
isting thing in the world necessarily involves clocking, 
without which there is no interaction. In these respects, 
our position is in complete opposition to the conven-
tional understanding of time measurement, where time 
is given a priori and the measurement of time by clocks 
is viewed as an incidental activity of intelligent observ-
ers. Contrary to the conventional understanding, our 
view is that all beings are engaged in measuring and ob-
serving, and the activities of measuring and observing 
are not incidental, but pertain to the essence of all inter-
actions. If we are permitted to express it somewhat 
boldly, we have turned things completely around: It is 
not that things exist and their duration is incidentally 
expressed by clocks. According to our formulation, 
clocks exist and their operation is necessarily expressed 
by duration. 

Philosophically speaking, our understanding stated 
in axiom 1 about the totality of nature reflects that of 
Spinoza, especially insofar as Spinoza says that the total-
ity of nature is Eternal, and defines Eternity as follows 
(Spinoza, Ethics, Part I, Definition 8, from E. Curley, 
1985, p.409): 

D8: By eternity I understand existence itself, insofar as it 
is conceived to follow necessarily from the definition alone 
of the eternal thing. 

Explanation: For such existence, like the essence of a 
thing, is conceived as an eternal truth, and on that account 
cannot be explained by duration or time, even if the dura-
tion is conceived to be without beginning or end. 

Our axiom 1 which asserts that the total universe, 
which will be denoted φ , is stationary means in its 
mathematical formulation that it is an eigenstate of a 
total Hamiltonian H . This means that the universe φ  
is an eternal truth, which cannot be explained in terms 
of duration or time. In fact, the eigenstate in itself con-
tains no reference to time, as may be seen from its defi-
nition: Hφ λφ=  for some real number λ . The reader 
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might think that this definition just states that the entire 
universe φ  is frozen at an instant which lasts forever 
without a beginning or end. However, as we will see, 
the total universe φ  has infinite degrees of freedom in-
side itself, as internal motion of finite and local systems, 
and never freezes. Therefore, as an existence itself, the 
universe φ  does not change, however, at the same time, 
it is not frozen internally. These two seemingly contra-
dictory aspects of the universe φ  are possible by virtue 
of the quantum mechanical nature of the definition of 
eigenstates. 

To sum up, the universe itself does not change. 
However, inside itself, the universe can vary quantum 
mechanically, in any local region or in any local system 
consisting of a finite number of (quantum mechanical) 
particles. Therefore, we can define a local time in each 
local system as a measure or a clock of (quantum me-
chanical) motions in that local system.  

Let us consider, finally, the relationship that our no-
tion of time bears to those of Newton and Einstein. 
First, we are in agreement with Einstein in abandoning 
the Newtonian conception of time as an absolute time 
pertaining to the entire universe. We have defined local 
times for describing local motions in a way that will be 
shown to be consistent with GR. However, we have also 
preserved certain aspects of the Newtonian conception: 
we have localized Newtonian time by showing that the 
local clock, as we have defined it, gives an approxima-
tion to Newtonian time which is valid for any particle 
of the local system. And, in another sense, we have re-
tained for the universe as a whole the absoluteness of 
Newton—but without the flow of time—since our 
definition of local time involves the consequence 
(whose implications will be explored in Part II) that the 
universe itself is not in time, but is eternal, as Spinoza 
has defined that term. 
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