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A solution of the of electromagnetic mass is obtained in the framework of Maxwell’s equations. There
is a mathematical proof that the electromagnetic mass possesses the standard properties of the inertial
mass. We conclude that Maxwell’s equations deal with two kinds of fields. These are local fields of
charged particles and the propagating fields of the electromagnetic wave.

Introduction
Two aspects of the electromagnetic mass (EMM) are

considered. The first aspect is the classical problem of the
EMM. Shortly after the discovery of the law of energy
conservation by Poynting, it turned out that the EMM
did not meet the standard properties of an inertial Mass.
Below we shall consider examples.

The second aspect is the problem of charged particle
models. It is known that charged particle models are not
stable because of Coulomb forces, which must break the
charge. The hypothesis was advanced that the inertial
mass of a particle was equal to the sum of the EMM and
the non-electromagnetic mass (NEM), creating a stable
state in the particle. Here a constraint was set by the
EMM problem: the bad properties of EMM must be
balanced by the other bad properties of NEM. Without a
solution to the problem of the EMM, the search for a
model cannot succeed (Ivanenko 1949; Feynman et al.
1964). It seemed that a solution might be provided by
quantum theory. However, this did not occur. More-
over, we know that many difficulties with quantum
theory have classical roots. The problem of the EMM is
one such problem.

Thus we have a vicious circle. Is there a way out?
Epistemology requires that internal contradictions must
not be allowed in any scientific theory. They have to be
resolved by changing the interpretation, transformation
of the model or modifications to the mathematical for-

malism of the theory.
Our task is to analyze the problem of the EMM (first

aspect).

1. The Electromagnetic Mass Problem
We begin the analysis with examples where the prob-

lem can be seen clearly. The authors wish to point out
that the density of energy of electromagnetic waves is
described well by Poynting’s vector. However, Poynting’s
vector is not in agreement with mechanics. Newton’s
mechanics states that the connection between the mass
m and the momentum P is

P v=m
In the same way, the relation between the density of mass
w/c2 and the density of energy flow S is as follows:

S v= w (1.1)
Analogously, we may write the density of energy flow Se
of the charge.

S ve ew= (1.2)
where we = 3

2
2gradφb g —the density of electromagnetic

energy of a charge.
We shall not consider relativistic examples, since

SRT has epistemological errors (Kuligin et al. 1989, 1990,
1994).
Example 1. Let us assume a charge with uniform electrical
density. The charge moves along the x-axis with con-
stant velocity v. For comparison, we select two points on
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the surface of the charge, as shown in Figure 1. With
Poynting’s vector we can obtain the densities of the
electromagnetic flux at the point.

S E H ve e=[ ]= (grad )2× ϕ (point 1)
S E He =[ ]=0× (point 2)

The velocities and densities of the masses have equal
values at the two points. At point 1, the flux density Se is
greater than expected by factor of 2. At point 2, the flux
density Se is equal to zero. What has happened?

If we consider relativistic velocities, then we have the
problem of the “ 4

3 ” factor, which is discussed in many
textbooks (e.g. Panofsky and Phillips 1962).
Example 2. Here we shall deal with a charged plane of
infinite extent. The plane is plotted in Figure 2 If the
plane moves upward with velocity v v cy y <<c h , then the
flux density is equal to:

S E H ve =[ ]=  (grad )2× ε ϕ (1.3)
Here again we find a violation of the classical rule

(1.2). In any part of the charged plane, flux density is
twice as high as the flux density as in Equation (1.2). We
have the alternative result if the plane is moved along the
x-axis: because of the symmetry the magnetic field is
absent. Consequently, the flux density is equal to zero.

S E H ve =[ ]= (grad )2× ε ϕ (1.4)
Once again, we find the paradox. In nature, inertial

mass is a scalar quantity. Logically we must accept that it
has to acquire tensor properties! What properties must
NEM have so that the full mass of the particle possesses
the standard inertial properties?

Moreover, any EMM of a charge which has the
asymmetrical form (for example ellipsoidal or toroidal
form), must have tensor properties. Any student can
check this. But this is nonsense!

2. Umov’s Vector
Now we shall solve the problem of EMM in the

framework of the non-relativistic case only. Two con-
siderations lead us to this approach.

1. Historically Maxwell’s equations arose due to Cou-
lomb’s law, Ampere’s law and Faraday’s law. We
must use experimental laws here.

2. We regard SRT as a questionable theory (Kuligin et al.
1989, 1990, 1994). We must therefore use the math-
ematical formalism of SRT (Lorentz transformation)
with extreme care.

It is known that the EMM depends on interactions
(Kuligin et al. 1986). For instance, if a charge is changed
by factor 3 without any change in volume, then the
EMM is changed by a factor 9, not by a factor 3. From this
point of view we shall work out the problem for the free
charge, where there are no interactions and the velocity
is constant. First of all, we must ascertain the connection
between Newton’s mechanics and Maxwell’s equations.

We write Maxwell’s equations in Lorentz’s gauge and
obtain the non-relativistic equations, which are correct
up to second order of v/c.

∆A j=-µ (2.1)

∆φ
ρ
ε

= − (2.2)

divA + =
1

02c t
∂φ
∂ (2.3)

where ∆ = + +2

2 2∂
∂

∂
∂

∂
∂

2

2 2x y z
A

v
=

c2

ϕ
(2.4)

and j v= ρ  (2.5) Additional Equations (2.4) and (2.5) are
necessary for the analysis.

We must show that Equations (2.1), (2.2) and (2.3)
are consistent with classical mechanics. For this purpose,
we replace the vector potential A  in Equation (2.1) by
the scalar potential φ  (using Equations (2.4) and (2.5)).

∆A j v

v

+ = 1 rot -grad

+ -grad + div -grad

=0

2µ ϕ

∂
∂

ϕ ϕ
c

t

×b g
b g b g (2.6)

In the mechanics of continuous media we have the proof of the
condition, when the vector a and the intensity of its field
lines are conserved (Kochin 1965):

rot[ ]+ + div =0a v
a

v a×
∂
∂ t

If we replace the vector a c2  by E = −gradφ , then we
obtain Maxwell’s equation (2.1) for the free charge.

Figure 1

Figure 2
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Similarly, we obtain Equation (2.7) from Equation (2.3).
This is the continuity equation of the potential in the
mechanics of continuous media .

div + =0vϕ
∂ϕ
∂ t (2.7)

In Equation (2.8) the scalar potential is generated by the
source ρ .

∆φ
ρ

ε
=

−
(2.8)

It can readily be seen that quasi-static electrodynam-
ics and mechanics have similar equations. Earlier work
(Kuligin et al. 1986) demonstrates this result. Now we
begin the proof of the law of conservation of energy.

Proof

Let φ  be the potential of the source ρ  (Equation
(2.8). We write the integral I.

I
t

r
t

r=
1
2

d dρ
∂φ
∂

ε
φ

∂φ
∂

3 3

2z z= − ∆ (2.9)

where d3r  is a volume element. With Gauss’s formula
we may write

  I
t t

o=-
2

grad d +
4

grad d2ε ∂ϕ
∂

ϕ σ
ε ∂

∂
ϕ τz zn b g (2.10)

where dσ is the surface element and no is unit surface
normal. On the other hand with Equation (2.6) and
Equation (2.7), we may write Equation (2.9) in the
following form

I

t

o=-
2

grad grad d

4
grad d2

ε
ϕ ϕ σ

ε ∂
∂

ϕ τ

× ×

−

z
z

v nb g
b g (2.11)

Comparison of Equation (2.10) with Equation (2.11)
yields

S nu
o

et
w tz zd + d =0σ

∂
∂ (2.12)

where Su is the density of electromagnetic flux or Umov’s
vector,

S v vu et
w=

2
- grad + grad grad =  

ε ∂ϕ
∂

ϕ ϕ ϕ× ×
RST

UVWb g (2.13)

Here Equation (2.7) was used; we is the density of
electromagnetic energy.

we =
2

grad 2ε
ϕb g (2.14)

Equation (2.12) is Umov’s law of energy conservation,
which was proved by Umov (1874) for the mechanics of
continuous media. A second proof of Umov’s law was
given by us (Kuligin et al. 1986).

It is clear that Equation (2.13) and Equation (2.14)
correspond to the equations of Newton’s mechanics
(1.1) and (1.2). With this result, we can calculate the
correct electromagnetic flux density in examples dis-
cussed previously. Now we calculate the EMM and the
momentum of a charge of arbitrary form

  m w x y ze e= d d dzzz ; P Se u x y z= d d dzzz ; P ve ew=

3.  Kinetic Energy Equilibrium
Now we shall prove another important result: the

kinetic energy equilibrium equation. We shall show that
the EMM possesses kinetic energy. This fact is not
particularity new. However, we must have the full pic-
ture of the phenomenon.

First we consider the physical model of the change of
kinetic energy of the field. If external forces act on the
charge, then the charge is accelerated and its kinetic
energy is changed. The change is connected with the
current density j and the vector potential A .

The accelerated motion of the charge can be treated
as the jump from one instantaneously co-moving iner-
tial frame to the next frame. The instantaneously co-
moving inertial frame and the non-inertial frame have
equal velocities at one instant. The field e = gradφ  is not
time-dependent and the vector potential A is equal to
zero in the instantaneously co-moving frame. The accel-
erated motion of the charge induces the additional elec-
trical field ′E , which is caused by the change of vector
potential A over time (see Appendix 1). The field ′E
cannot be considered as a negligible quantity. In the
instantaneously co-moving frame the field is equal to

′E
A v

=-
1
2

=-
2 2

∂
∂

ϕ ∂
∂t c t (3.1)

The density of the power which is generated by the
charge is equal to

p
t tk e= = =-

2

ρ
∂
∂

µ
∂
∂

Ev
v jA*

2 4
FHG IKJ (3.2)

The power density does not depend on the inertial frame
in Newton’s mechanics.

Now we shall describe this model mathematically.
To prove the equation we use Green’s formula of vector
potential

E M E M E M n∆ d = div div +rot dτ τrot ob gzz
where E and M are the vector potentials of two arbitrary
fields.

Let E A= 1
2 ∂ ∂tb g  be the field which is generated

by the accelerated charge and M A= µ  be the vector
potential of the field divided by µ . In this case we obtain
full kinetic energy equilibrium equation, and we can
write the differential form of this equation :

div + + =0Sk
k

k
w
t

p
∂
∂ (3.3)

where:

a) p
tk =-

1
2

=-
4

j
A jA∂

∂
FHG IKJ (3.4)

is the density of power which changes kinetic energy ;
and

b) w ivBk = +
1

4
2 2

µ
A Ab g b grot (3.5)
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is the kinetic energy density. With Equation (2.4) we
have Newton’s result

w
c

w
ck

e
e=

2
grad = =

2
2

2v v v
2 2 22

2

2

ε
ϕ µb g *

c) S
A

A
A

Ak t t
=-

1
2

div + rot
µ

∂
∂

∂
∂

×
F
HG

I
KJ (3.6)

i.e. the kinetic energy flux density. We now illustrate this
kinetic energy equilibrium equation with a simple ex-
ample.

4. Change of Energy of a Current Element
In quasi-static electrodynamics the vector potential

of a current element is equal to :

d =
d

4 r
A

l
µ

π
I tb g

(4.1)

Substituting Equation (4.1) into Equation (3.6) and
Equation (3.8) we have the following results.

1. The kinetic energy density is equal to :

d =
2

( )d
4 r

2
2w

I t
k

µ
π

lF
HG

I
KJ (4.2)

The distribution of the kinetic energy density is
radially symmetric.

2. The kinetic energy flux density is

d
t

wk k
2S r= d2∂

∂ (4.3)

Now we discuss the peculiar properties of the flux
density d2Sk

a) The change of d2ω k  is associated with d2Sk . The
flux density d2Sk  depends on the change of squared
current I in time. If the current increases, then the
flux density d2Sk  is positive and d2Sk  is directed
toward the radius. This flux increases the kinetic
energy of the electrical field. If the current I de-
creases, then the flux comes back toward the current
without loss. The flux tends to conserve the previous
current in time. The flux density d2Sk decreases as 1/
r3 in space.

b) If the current changes, then the kinetic energy flux
appears simultaneously throughout space.

c) Contrary to Umov’s vector, which deals with the
transfer of energy with velocity v, the kinetic en-
ergy flux is connected only with the acceleration of
the charge.
The electrical field is

′E
A

 =-
1
2

∂
∂ t

We can regard this as integral EMF (self-induc-
tion) of a current element. This analogy is given
for illustration.

Conclusions
1. We have investigated the problem of the EMM of a

free charge. Note that in the proof no hypotheses were
used. The EMM has Newton’s momentum and clas-
sical kinetic energy within the framework of Maxwell’s
equations.

2. The inertial mass mo  of the charged particle is equal
to

m m mo e n= +
where: me  is the electromagnetic mass and mn  is the
non-electromagnetic mass.
Using the induction method we can prove that the

NEM has the standard properties of the inertial mass.
The thesis can be extended to the general case. Any
inertial mass must have standard mechanical properties, which do
not depend on nature of the mass.  This is a very important
result.
3. We conclude that Maxwell’s equations deal with two

kinds of fields :
a) the fields of charges (Coulomb’s potentials and

Umov’s vectors; the rest EMM of the charge is not
equal to zero);

b) the fields of the electromagnetic waves (retarded
potentials and Poynting’s vectors; the rest EMM
of the electromagnetic wave is equal to zero). If we
use only retarded potentials in our research, then
we cannot give a full and correct picture of nature.
It is also possible that the quantum properties of
particles may be explained by classical methods.

The problem of a classical model (or structure) of
charges is now of prime importance.
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Appendix
We write the integral variable of the charge which

interact with the potential forces. The charge density is
constant and rotation of the charge is absent. All points
of the charge move with the same velocity.

S
c

t= - 1- + d d
2

µ τ* v
2 2

F
HG

I
KJ

L
NM

O
QPzz Λ (A.1)

where: µ µ µ* * *= +e n ; µ e
*   is the electromagnetic mass

density; µ n
*   is density of non-electromagnetic mass.

The ponderomotive equation follows from Equation
(A.1).

 
∂
∂

µ µ µ
t

c* * *v v vd i d i d i+ rot - grad +grad = 0× 2 Λ (A.2)

a) Suppose that external forces are absent (Λ = 0 ). The
particle is stable if the following condition is met:

grad =grad grad = 0µ µ µ* * *
e n+ (A.3)
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b) If external forces exist (Λ ≠ 0 ), then we must sup-
pose that the structure of the particle is conserved
and, hence, the condition (Equation (A.3)) applies.
Now Equation (A.2) is multiplied by v. With Equa-
tion (A.3) we can write the product.

− − + =v v v v
∂
∂

µ
∂
∂

µ
t te n

* *d i d i gradΛ 0 (A.4)

The first term of Equation (3.4) is the electromag-
netic power of the accelerated charge.

p
t tk e=- =

1
2

=-v v j
A jA∂

∂
µ

∂
∂

*

4
FHG IKJ (A.5)

Recall that  ρ and φ  are not time-dependent.
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