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Assigning to the &ther fluid a velocity-dependent refractive index can ensure that a spherical light wave
remains spherical for all observers. Motion relative to zero-point radiation cannot be measured,
suggesting identification with the gther. The divergent energy density U of zero-point radiation when
added to self-gravitational potential energy density (u/ Kczﬁf Dog where f Uog =-2pGr ,R?/3
yields total energy density Kr ,¢?, which isfinite if 2pGr ,R? = 3Kc? . Because mf lo = - Kme?,
addition of mass m does not increase r , . The uniformly dense sphere then becomes an exact cosmological
model. Spontaneous matter creation is possible at any world point without affectingr , . Duality of such

a theory with de Sitter cosmology is claimed.

The Ather Fluid

Length contraction and time dilation were originally
postulated as physical effects due to eether motion in order
toresolve the null results of &ther drift experiments. How-
ever, these two effects by themselves do not ensure that a
spherical light wave remains a spherical light wave for
observerswith uniform relative motions. Assignationto the
&ther of a refractive index n(u) which depends on &ther
velocity u can, however, resolve the problem, as pointed out
previously (Browne 1995a,b). The required expression for
n(u) can be obtained in several ways, the following being a
particularly simple one.

Letalight ray have velocity c relative to the &ther which
has velocity u, and let g be the angle between c and u.
Adding the kinematical effects of eether drift, and assigning
to the moving &ther a refractive index n(u) which is a
function of u so that ¢ is replaced by c¢,l=c¢/n{, we expect
that light velocity has components (¢,cosq+u,
¢, cosasing ), parallel and perpendicular to u, where
sina =u/c. The cosa factor arises because radiation
must propagate slightly upstreamin order to progressin the
direction transverse to the flow. The condition that a
spherical light wave should remain spherical is

ccosg ® ¢,cosq +u=ccosq¢
%
csing ® c,4l- z

n

sing =csing¢ 1

where the angle between c and u now is gq¢. Eliminating
g¢, we require that

2
bcn cosq +ug2 +C§Fl— LCJ—ZAsian =¢? ?)
n

which reduces to

¢, +UCosq =¢ 3
Defining b, =u/c, =nu/c=nb, (3) yields
n=p1- 6>éj'1=el+6n>éj @)
where € =c/c. Then, using (4) in (1) we obtain
cosq +b, dl— bﬁi%sinq

cosq¢=——— singt=—————
1+b,cosq q 1+b, cosq
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which will be recognized as the relativistic transformation
of velocity components (¢, cosq , ¢,sing ), or relativistic
aberration of light.

There remains the question of the physical nature of the
&ther fluid. Let radiation be trapped by perfectly reflecting
walls of a cylinder closed at one end by a piston. Let the
piston have velocity v, and let the compression or expansion
of radiation be adiabatic. Doppler effect for radiation inci-
dentatangle g tothe normal of the movingsurface changes
frequency from w to w¢, where

M:: 1- Zvﬁ (6)
w C
It is then simple to show (Browne 1995c) that radiant
energy density per unit frequency band U,, changeswith
the volume V of the cylinder according to

w [1dU,, dv
ot = NEFW# ' UWBV ™

aresult due to Planck. Because zero-point radiation has the
spectrum U,, pw?, dU,,/dV as given by (7) vanishes, so
U,, does not change with V, and hence the piston does no
work. This unique property of zero-point radiation permits
its identification with the &ther. A detector comoving with
the piston registers the same value of U,, whateveritsvelocity
v. Thus, zero-point radiation remains isotropic with respect
to all reference frames in uniform relative motion, making it
impossible for an observer to measure his state of motion
relative to the fluid. By contrast, motion relative to the 2.7 K
cosmicblackbody radiation givesrise to fluxanisotropy which
can be measured (Smootetal. 1977).

Unit Fields

The validity of cosmology based on Newtonian-type
gravitational fields in Minkowski space-time requires a
digression about unit fields (Browne 1976). If units are
defined by natural standards ata fixed world point x2 , then
measurements of the surrounding scene are possible only
by the Milne (1948) procedure of radar surveying. Radar
coordinates are assigned to remote events from the time of
outgoingand returning light signalsas measured by a clock
at x3 ,with the assumption of constant light velocitycinall



directions. Constant light velocity implies that the length
unit cdt, at x¢ is used along the path to the reflection
event. When the radar coordinates are plotted on a space-
time, the geometry (as revealed by round-trip light paths
involving more than one reflection) is not in general Eu-
clidean. Thus, the curvature of space-time (a 4-dimen-
sional hypersurface) is predetermined.

An alternative and equally valid units convention is to
transport natural standards from fixed point x¢ toall field
points ya ,where theyare used to measure local infinitesi-
mal elements of the surrounding scene. Transport of units
changes their values as dictated by the change of gravita-
tional potential, but because the system being measured
and the units are equally affected by changes of potential,
the measures obtained are independent of gravity and
hence obey the laws of geometry for flat space-time. We
term such units “covarying.”

“Covarying units” are obtained from constant units by
application of special relativistic time dilation and length
contraction appropriate for ather velocity field uDr,tg,
which is identified with “free-fall velocity” in f r,tg (ve-
locity acquired in linear free fall to potential f Dr,tg from
reference potential zero). By relating measures in terms of
“covarying units” to measuresin terms of constant units, we
may transform the Minkowski metric for the former units
into the appropriately curved metric for the latter units. The
Schwarzschild and de Sitter metrics can be derived simply
by this method (Browne 1976).

The convention of constant units transfersall informa-
tion about gravitation to space-time geometry, and &ther
parameters remain implicit. On the other hand, the choice
of “covarying units” transfersall information about gravita-
tion to the four unit fields, and &ther velocity becomes
explicit. Specifically, &ther velocity uDr,tg becomesagravi-
tational field variable.

We may relate uD g to f D . First, construct a
velomty 4-vector for the aether fluid Ua ° egb 9] where
b= u/c and g —dl b? | , and then define a gravita-
tional potential 4-vector,

A? = - u*Kc? (8)
where K is the ratio of inertial to gravitational mass. In 3-
vector notation

A =0Af = 0Kequ, oce?| ©)
where g :dl- u?/e?| " Since g - Ke? = -f Drg+f Dog,
we verify that b =u/c is free-fall velocity in f .
Gravitational Inertial Force

Consider a particle moving with velocity v in the gravi-
tational potential fields (8). The comoving derivatives of
(A f g are

9A_dA b gia

dt dd'& _
=—+|‘\'|bvag-v'eF\’|'A]

df d?t (10)

— ==+ Vv x\f

dt dt

where we use a well-known vector identify for fv >‘NJA
noting that v = constantand A = ADr tg

The invariant,
gv xA
C

has constant value Kc? provided that v@ =u® along the
world line of any particle, so that

A V2 =d -

= Ke? (11)

= =V XA
N “'FTVQ (12)
Then (10) yields
OA_ A RV et
cdt cat
df _fxv (13)

where fis a gravitational Lorentz force on unit mass. In 4-
vector notation, equations (13) are

dA, m
odt ma - Aa,mhv (14)

where dt D= dt/gg is proper time.

On the righthand side of (13) we have a gravitational
Lorentz force on unit mass with velocityv. On the lefthand
side we have inertial force on unit mass, because
-dA/cdt = KdUg\/g/dt from (9). Inertial force is due to
regauging of the potentials in order to maintain (11).

The geodesic equations for a space-time with metric
tensor J,p can be written in Euler-Lagrange form

, gyl
dt

where v@ =dx?/dt . The total derivative of g,,v™ along
the world line of the particle is

ddgamvmi _Cg thVn

= gnm,a V! (15)

= (16)
dt :
Subtraction of (16) from (15) yields (14) if
A, = 0umV™Kc? 17)

Renormalization of Energy Density of Zero-Point
Radiation

One is now in a position to extend the Newtonian
cosmology of McCrea and Milne (1934; McCrea 1951).
The starting point is the Newtonian potential field f Ur
inside a sphere of radius R with constant mass density r
Poisson’sequation,

N2f Drg =-4pGr, (18)
subject to the boundary condition f DRg =0 hassolution,

2pGr ,R2 2
e

Itisproposedtoidentify Kr ,c2 withtheenergy density
of zero-point radiation after renormalization by inclusion
of self-gravitational potential energy density. Because
du,, /dV in(7)vanishesthereisno potential energy due to
pressure of zero-point radiation, so that enthalpy density
and energy density of zero-point radiation are equal, in
agreementwith (Browne 1994a) (but contrary to (Browne
1994b). Nlow the total electromagnetic energy density of
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zero-point radiation U is renormalized to +Kr 2, where
f Uoyu
+Kr 2 =U 1+M2—é
Kc
2pGr ORZQ (20)
3Kc?

In order that r, should remain finite as U ® ¥ , we
require that

=U|l-

2pGr ,R? = 3K¢? (21)
so that (19) becomes
b= ke
f I’g—— Kc Fl— ?A (22)

Thetotal massinauniverseis M = 4pR2r /3. Hence,
another form of (21) is R = ZGM/Z Kc? . Thus R is the
Schwarzschild radius for isotropic coordinates (Atkinson
1962), and hence it has the significance of an event horizon
for a black hole. Since interaction between the content of
the black hole and external matter is severed, we are justi-
fied in cutting off r , at r =R in (19).

A consequence of (22) is that a mass m has zero total
energy,

E =f Jof + Kme? =0 (23)
Thus, an arbitrary distribution of matter may be superim-
posed on zero-pointradiation withoutany changeof r , . A
uniformly dense sphere as a cosmological model is exact,
notapproximate.

Because asingle physical constant (r , or R) sufficesto
specify a perfectly isolated system (a “universe”), and be-
cause generally covariant equations can be applied to only
a perfectly isolated system, the source term in the Einstein
field can be only the cosmological - Ly, . The conven-
tional source term kT,, must be omitted. The curvature
invariant then becomesaconstant 4L . The modified field
equations have solution

ds? =g 2¢%dt? - g2dr? - r?(ldq? +sin2qdf 2|

-k
g= ﬁl_ a L_“A (24)
r 3

where ais an integration constantand L = 3/R2 .

There arises the possibility of spontaneous matter cre-
ation at any point without an additional source of energy.
Presumably matter represents excitations in the form of
standing waves in the &ther fluid. Standing waves require
a boundary condition, the simplest being a vortex ring.
Development of pairs of vortex rings may represent spon-
taneous creation of electron positron pairs, presumably the
ultimate building blocks for matter. If matter is treated asan
excitation in a fluid, then only motion of matter relative to
the fluid is physically significant. Standing waves in vortex
rings might provide a physical basis for string theory.

Conclusions

1. Aspherical lightwave remains spherical with respectto
an &ther which has refractive index n = el b >cJ ,

where bt (=u) is &ther velocity and € =¢/c, and ciis
ray velocity.
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2. Motion of an observer relative to zero-point radiation
cannot be measured, unlike motion relative to the
cosmic 2.7 K blackbody radiation, because no work is
done in compressing or expanding zero-point radia-
tion.

3. There exists a duality between extended Newtonian
gravitation (ENG) in flat space-time with covarying
unit fields, and general relativistic gravitation (GRG)
with constant units. ENG transfers information about
gravity to the unit fields, which are specified by &ther
velocity field ulr.t].

4. Defininggravitational 4-potentialby A? = Kc?u? , itis
necessary to continuously regauge A®* at the position
x4 ofaparticle with velocity v® so that u? xAI =
This condition leads to an equation of motionin WhICh
dA, /dt duetoregaugingisbalanced by agravitational
Lorentz force. Equivalence to the geodesics of GRG is
demonstrated.

5. Cosmology for ENG is investigated. The divergent
energy density U of zero-point radiation isrenormalized
to Kr ¢ by addition of self-gravitational potential
energy UfD 9/ Kc? , where f Ugh is potential at r =0
due to a uni ormly dense sphere of radius R. The
condition for r, to be finite is 2pGr ,R? = 3Kc¢?.
Then f = - Ke?(t- r2/R?|.

6. Because Kmc? +mf DO =0, addition of matter to the
zero point radiation adds nothing to the mass density

o - The uniformly dense sphere becomes an exact
cosmological model. Then r, (or R) specifies a uni-
verse. The material energy source term must be omitted
from Einstein’s equations, and the cosmological term
treated as source. The solution is then de Sitter space-
time, in agreement with what is obtained from a units
transformation (Browne 1976).

7. Since rest mass is always canceled by gravitational po-
tential energy, matter can be created spontaneously at
any pointwithout additional energy. Creation of matter
isenvisaged asthe development of structure in the zero-
point radiation (or equivalent graviton fluid), the first
step of this development being appearance of vortex
pairs which may represent electron-positron pairs. A
steady state is envisaged, with matter appearing ata rate
sufficient to balance its rate of decay. The picture to
emerge is of an infinite, eternal Cosmos within which
“universes” with black hole properties are finite, iso-
lated systems in a steady state.
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