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Action and Quantum Mechanics

P. Marquardt and G. Galeczki
Institute of Physics II, Zülpicher Straße 77
D- 50937 Köln, Germany

Rotational motion is inherent to matter at every level of organization, from electrons up to clusters
of galaxies. The prominent feature of bound, periodic systems is the quantization of action inte-
grals in general, and of angular momentum in particular. Every bound system is governed by a
permanent interplay between kinetic and potential energy, so that the product (energy converted)
∗ (characteristic time) = action is minimized. The wave (Schrödinger or Dirac) equation de-
termines the discrete frequency spectrum of the system, as in classical wave theory. The genuine,
irreducible quantizations are of charge, angular momentum and magnetic flux. The stability of
the hydrogen atom against radiative decay is explained by Weber forces which obey Newton’s
action and reaction principle. De Broglie’s monochromatic plane waves v tp

2 2 2 0∆ − =∂ ∂ ψ

are a consequence of “Lorentz transforming” a simple harmonic oscillation, but are not Lorentz-
invariant because their phase velocity, v c vp ≡ 2  (with v the particle velocity) always exceeds the
velocity of light, c. Schrödinger’s equation— which is no wave equation at all—cannot be de-

rived in a consistent way from de Broglie’s wave mechanics, where E c m co
2 2 2 2 2

− =p d i  has to

hold for the momentum (p) and energy (E) of a particle with rest mass mo. Schrödinger’s equa-
tion and de Broglie’s waves are incompatible in the time domain. As a kinematic concept and
interpreted as abstract “probability patterns” in space associated with the motion of hypothetical
point masses, de Broglie waves are devoid of physical meaning. The dispersion relation

ω 2 2 2 2= +m c h cod i k  suggests taking ω 2 2− ckb g  as the proper invariant of a dynamical wave

theory instead of the space-time invariant r2 2− ctb g  from special relativity. Now the waves can
be understood in terms of action, which traces the origin of particle motion to the potential, in line
with physical causality.
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1. Minimal action in bound systems

1.1. Action variables

According to the opinion now prevailing, quantum
mechanics originated with the hypothesis, made by
Planck in 1900:

E h= ν (1)

Planck stipulated that emission and absorption of elec-
tromagnetic radiation occurs in discrete quanta of energy
E given by the frequency of the radiation, ν , multiplied
by a universal constant h with the dimensions of action.
This was in line with Poincaré’s picture of the atom as

providing the “vestibule” for the quantization of (free)
radiation (Poincaré 1924). It was, however, a less radical
assumption than Einstein’s dictum (in colorful south
German slang): “Beer is not merely sold in pints, it consists
of pints”.

The Bohr-van Leeuwen theorem (i.e. the absence of
classical diamagnetism) and the failure of electrodynam-
ics and of statistical mechanics to explain both spontane-
ous magnetization (i.e. ferromagnetism) and paramag-
netism—in short the failure to account for all three types
of magnetism described by Faraday—provided the
strongest motivation for Bohr’s “old” quantum mechan-
ics. Since the magnetic moments induced by an external
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magnetic field vanish when the field is turned off,
Langevin assumed in 1907 that paramagnetic substances
contain permanent moments. Weiss, in 1911, postulated
the existence of permanent, elementary (i.e. quantized)
magnetic moments in order to describe the behavior of
ferromagnets above the Curie-Weiss temperature. Re-
markably, in 1913, Bohr explained the discreteness of
both electron energy and magnetic moment by postulat-
ing the quantization of angular momentum, which
turned out to be a particular case of the quantization of
action variables J i :

J J E p q E q n hi i n i i n i i≡ = =zb g b g, d (2)

with En  the energy eigenvalues, and pi and qi a pair of
conjugated variables. The integral in Eq. (2) is carried
out counter-clockwise around a closed contour enclos-
ing the two classical turning points and the section of the
qi axis between them. The eigenvalues En  may be corre-
lated with the value nih by inverting Eq. (2).

Energy quantization for bound systems is, in itself,
nothing mysterious, and there is no justification for the
artificial schism between “classical” and “modern” (i.e.
quantum) physics. Indeed, the mechanics of vibrating
systems, such as plates, strings, and rods, yielded numer-
ous examples of quantum relationships in the 19th
century (Wesley 1983a). The mathematics of
“eigenfunctions” and “eigenvalues” is common to a vi-
brating string and to an electron bound to a proton. In
the mathematical sense, the eigenvalue problem is the
quantum theory, as recognized first by Schrödinger
(Schrödinger 1926).

1.2. Bound systems and uncertainty

The usual quantum mechanical uncertainty state-
ments relate to a conjugate pair of variables. In a mathe-
matical sense, the uncertainty relation is a local statement
about, say, momentum and “position”. (The notion of
“position” is physically relevant only in connection with
potential energy). Its global counterpart may be regarded
as a cyclic integral, as in Eq. (2), that can only assume
equidistant discrete values (Post 1977). The uncertainty,
when viewed in global terms, then reflects a smallest
error that can occur in the evaluation of the integral.
The process so described represents a counting operation
concerning entities enclosed by the cyclic path of the
integral. Out of four examples considered by Post
(1977), two are highly relevant for the present discus-
sion:

Counting action quanta inside a closed loop:

p rd =nhz (3)

The uncertainty in its evaluation is

∆ ∆p r = ′n h (4)

Counting flux quanta in a closed loop:

A rd =
nh

e2z (5)

where A and e denote the vector potential and the
(quantized!) electron charge, respectively. The uncer-
tainty in the evaluation of Eq (5) is:

∆ ∆A r = ′′n h
e2

(6)

Of course, there is a world of difference between the
traditional interpretation of ∆r in particle position and ∆
r as an uncertainty in loop position. Moreover, the
“uncertainty relation” (4) is always an equality since the
error in counting can only be an integer! The basic assump-
tion is that the entity in question (action, flux) is indi-
visible and is either inside or outside the closed loop.

The “Fock conjecture” (Fock 1978), meanwhile,

∆ ∆x p n
En= + =1

2c h
ω

(7)

with n, En, and ω a quantum number, the energy of the
system in its nth state, and the characteristic cyclic fre-
quency of the bound system, respectively, has allowed
us (see Marquardt and Galeczki 1994) to rewrite the
traditional uncertainty relation as an equality*:

r p E E
s

sr pot kin
2 2

2

2

2
2

=
+b g
ω

(8)

Equality (8), valid for bound states governed by
power law central potentials V r r Sb g~  provides a rigor-
ous constraint on the average kinetic and potential ener-
gies of a stationary quantum state. Remarkably, relation
(8) also holds for a superposition of stationary states, since
the virial theorem upon which it relies holds for time
averages, too (Ma 1991).

E s Ekin av pot av
= (9a)

E
E

spot av
=

+
2

2
(9b)

                                                                       
* In a central field, using the radial component operator

p i r rr = − +∂ ∂ 1b g  the Hamiltonian takes the form:

H p m l l mr V rr= + + +2 2 22 1 2b g b g  with l(l + 1) the eigenvalues
of L2 where L is the orbital momentum operator. This second
term in H is sometimes called “centrifugal potential energy”. In a
given stationary state, the average <r–2> equals some constant Ko
so that:

p E Kr kin o
2 = −  and V Epot=

Alternatively, one can redefine the potential energy:
U V h l l mr≡ + +2 21 2b g . Therefore:
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where < > denotes the expectation value in the state
and < >av indicates time average.

Eq. (8) is thus a very far cry from the “inaccuracy”,
“indeterminacy”, or “uncertainty” labels attached to ine-
qualities like (4): The actual meaning of (8) is that of a
constraint imposed on average energy values rather than
on variances of r and pr.

1.3. Rotating systems and quantized angular mo-
mentum

The following considerations stem from the obser-
vation that rotational motion is inherent to matter at every level
of organization, from electrons up to clusters of galaxies.
Before World War I, this led to the so-called Schuster-
Wilson hypothesis (Aspden 1980), viz., that a fundamen-
tal property exists which causes any rotating body to
have a magnetic moment. Strangely, the interpretation
of the quantum mechanics of stationary states banished
dynamics in general and rotation in particular from both
physics and language. According to the established jar-
gon, “the electron does not have angular momentum; it
is in a specific angular momentum state”. How a
“smeared out particle” or a static (spatial) probability
distribution function could account for a dynamical
property like angular momentum is considered “a wrong
question” in orthodox quantum mechanics.

In the history of quantum mechanics since 1925, spin
became an abstract mathematical concept related to the
irreducible two-dimensional (spinor) representation of
the rotation group. In spite of its relation to the rotation
group (which, by the way, is a perfectly classical con-
struction with no specifically “quantum” or “special
relativistic” features), the quantum mechanical spin of
an elementary particle is denied any relationship to rota-
tion in the dynamical sense. For example, according to
Landau and Lifshitz (1965), spin is a genuine quantum
mechanical property (i.e. it disappears when h = 0) and
it would be meaningless to represent the intrinsic angu-
lar momentum of an elementary particle as a conse-
quence of rotation around its own axis. The origin of
this dogma can be traced back to Born’s conceptualiza-
tion of the elementary particles as “material points guided by
probability distributions”, the unspoken premise being that
a point cannot rotate around itself.

Fortunately—the orthodox formalism notwithstand-
ing—attempts have been made to explain “spin” by
models of rotating extended particles (Bergman and
Wesley 1990). When assessing the relative merits and
drawbacks of such models, we must always keep in
mind that rotating extended charge models have to be
consistent with electrodynamics. This is not an easy task,
in view of the notorious failure of both the spherical
charge model of the electron and of the Rutherford
atom to remain stable under the action of electromagnetic
forces alone. Contrary to the widespread lore that the exis-
tence of stationary states of the hydrogen atom (either

postulated à la Bohr or derived à la Schrödinger) has
solved the problem in one stroke. Quantum mechanics
has actually evaded rather than tackled the problem of
electrodynamical instability.

The dynamics of rapidly rotating bodies developed
by Carmeli (Carmeli 1985) on a metric with R X S3 to-
pology and invariant under “rotational Lorentz trans-
formations”, besides being open to basic criticism*,
evades the problem of the electrodynamically unstable
electron as well.

Schrödinger (1926) attempted to apply the unaltered
Maxwell-Lorentz equations inside an atom filled with a
time-independent electron charge and current distribu-
tions. He imagined the electric and magnetic field inside
the atom as having axial symmetry, so that the Poynting
vector S = E × H would be directed azimuthally and
closed on itself. Such a “rotational atom” would not ra-
diate, since the electromagnetic energy would only cir-
culate inside the atom. Unfortunately, the Schrödinger
model of the atom does not fit the spectroscopic data ac-
curately enough, since the suggested charge distribution
would require (via the Poisson equation) the addition of
an electron self-energy term to the already well-tested
Schrödinger eigenvalue equation.

It is our conviction that the stationary states of the
hydrogen atom are not static and therefore—in so far as
Maxwell’s theory is preserved—the moving electron
would radiate, even if its trajectory could not be visual-
ized in a “classical” sense. The instability of the Ruther-
ford-Bohr atom is not rooted—as is usually claimed—in
the incompatibility between the Larmor radiation for-
mula and Planck’s hypothesis (1), since it is not electro-
magnetic frequency that is quantized. Similarly, in sta-
tistical mechanics, the thermal energy per degree of
freedom, kBT, is not quantized, the temperature being a
continuous intensive variable. As already pointed out, it

                                                                       
* After pointing out that “nothing comparable to Einstein’s special

theory of relativity is known in physics” and that “it should be a
guide to the fundamental laws of physics”, Carmeli (1985) sug-
gested that the constancy of the spins of the photon and other
elementary particles leads to a “new Lorentz-type transforma-
tion” and to an upper limit for angular velocities, just as the
constancy of the speed of light leads to the “ordinary” Lorentz
transformation. While agreeing with Carmeli that the constancy
of spin (together with that of electric charge) is the most remark-
able feature of elementary particles, we do not share the idea of
“rotational relativity”. Absolute rotation is easily detected in a
closed laboratory, as demonstrated by the historical experiments
of Foucault, Sagnac, Kennard, Michelson-Gale, and others. The
hypothetical composition law for (parallel!) angular velocities:

Ω
Ω Ω
Ω Ω Γ

=
+

+
1 2

1 2
21d i

with Γ playing the role of c in the “ordinary” Lorentz transfor-
mation, is devoid of any physical basis.
In other fields of interest, e.g., the physics of electrons and light
holes in narrow and direct gap semiconductors with zinc-blende
structure (Hrivnak 1993) or the optics of stratified planar media
(Vigoureux and Grossel 1993), the analogy with the above-
mentioned hyperbolic velocity composition law is recognized as
a (mathematical) coincidence without physical implications.
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is action in bound systems which is genuinely quantized.
In our view, the instability of the atom against the effect
of electromagnetic forces is tied to the violation of New-
ton’s action-reaction principle by these forces (Cleveland
1936).

Paradoxically, it is customary to consider this viola-
tion as a requirement for the endowment of the fields
with momentum and, in this way, to restore linear mo-
mentum conservation to the system consisting of both
charges and fields (Panofsky and Phillips 1962). This
procedure is consistent with the relational electromag-
netism of Sachs (Sachs 1971) and Schwebel (Schwebel
1972) in which fields are always bound to their sources,
but incompatible with both the accepted Maxwell equa-
tions and the photon concept as quanta of free fields. If
we wish to preserve this photon concept, we have no
other choice than to change our electrodynamics. The
Weber potential (Weber 1848)

U
qq v c

R

qq v c

Ro o
=

′ −
≈

′ −b gd i b gd i1

4

1 2

4

2 2 2 2
1

2
1

2

πε πε
(10)

between two moving charges q at r and q' at r' where
v r r r= = ′d d d - dt tb g  is a promising start. It can be
shown that:

d
d
U
t W= −vF (11)

with Fw the Weber force* obeying Newton’s third
principle. Since the force is derived from a potential,
energy is conserved for a system of moving charges un-
der the sole action of electromagnetic forces.

In the Maxwellian electrodynamic case, Newton’s
principle of equality between action and reaction is
clearly violated. For example, the electron moving on a
closed orbit “acts” on the “fixed” proton with both electric
and magnetic forces, while the proton “reacts” only with
an (attractive) electric force. On the other hand, accord-
ing to Larmor’s radiation formula, the electron should
continuously lose energy by radiation and finally fall
onto the proton. Endowing the radiation with linear
momentum neither restores Newton’s third principle,
nor does it confer any stability to the hydrogen atom.

On the other hand, Weber’s force

F
R vR R v

W qq
R

v
c cR t

= ′FHG IKJ + FHG IKJ − +
L
N
MM

O
Q
PP3

2 2

21
3

2

b g
b g

d
c d2 ,

obeying Newton’s third principle, does not allow for
radiative energy loss from the bound electron-proton
system. Since the electromagnetic stability of the atom
is assured, one can neglect the velocity-dependent term
in Eq. (10) (v c2 2 62 10≈ − ) and solve the wave equation

                                                                       
* The “1/r2 character” of both Newton’s and Coulomb’s laws has

led to a false identification of the gravitational and electromag-
netic “Kepler problems”.

for U qq Ro≈ ′ 4πε . Solving Schrödinger’s equation in
the approximation

U
qq v c

Ro
≈

′ −1 2

4

2 2d i
πε

as in Eq. (10) provides us with the fine structure of the
spectrum. Quantum mechanics and Weber electrody-
namics are thus perfectly compatible.

The Weber force Fw assures the stability of both the
hydrogen atom and of the electron itself. The Bergman-
Wesley (1990) spinning ring model of the electron is a
pure electromagnetic field model with no rotating mat-
ter involved. It is essentially a steady-state toroidal field,
the discontinuity of the field on the torus and the elec-
tromagnetic field energy defining the electric charge e,
magnetic moment µ  and (rest) mass m. The field is di-
vided into an electrostatic and a magnetostatic field as-
sociated with potential and kinetic energy, respectively.
Due to the equipartition between electric and magnetic
energy, and to the fact that only the magnetostatic en-
ergy contributes to the angular momentum of the elec-
tron, the puzzle of the gyromagnetic ratio being about
twice the classical value is readily explained. The magni-
tude h 4π  of the free electron spin angular momentum,
however, has to be postulated in order to fit the spectro-
scopic data. The circumference of the ring equals the
Compton length, h/mc, while the tangential velocity of
the ring equals the velocity of light, c.

Within the hydrogen atom, both the magnetic and
the electric energy contribute to the orbital momentum
of the electron. Therefore, the gyromagnetic ratio equals
e/2mc, as expected classically. We emphasize that neither
orbital momentum nor spin alone, but only the total an-
gular momentum, is a constant of motion. Moreover, as
shown by Oudet and Lochak (1987), only Dirac’s equa-
tion is able to correctly describe the angular momentum
of an atom and to give the best nomenclature of the
magnetic states. Although Dirac’s equation rigorously
holds for the hydrogen atom only, Oudet and Lochak
succeeded in accounting quantitatively for the magnetic
moments at 0° K of heavy rare earth metals, Cr com-
pounds, Fe, Co, and Ni, by assuming that “the coherence of
the angular states of each electron is stronger than the ensemble
angular coherence of the electrons of the atom. The total angular
momentum of an electron is considered as an inalienable (=
untouchable) property.”

The angular momentum of composite systems like
protons, neutrons, and nuclei equals the additive sum of
their respective components. The magnetic moments of
these composite systems, however, require the knowl-
edge of the gyromagnetic ratio of each component. This
is known only empirically, the spin (s) and orbital (l) g-
factors of protons (p) and neutrons (n) are gs,p = 5.57, gl,p
= 1, gs,n = –3.83, gl,n = 0, respectively. The g-factors of



APEIRON Vol. 2, Nr. 1, January 1995 Page 9

the hypothetical quarks within the baryons are in prin-
ciple unknown because, obviously, no free quarks exist.

We conclude this section by mentioning that mi-
croparticles with integer spin (“bosons”) are, as a rule,
composite particles, the notorious exception being the
photon. (The status of the W+,W–, and Z° intermediate
bosons of the Salam-Weinberg theory is not clear (Dirac
1981) mainly due to the fact that they are very massive.
Moreover, the experimental evidence found by Rubbia
and van der Meer (Nobel prize 1983) is indirect, consist-
ing in “single electrons whose trajectory matched the
one expected in a W– particle’s decay.”) This vector
boson, with angular momentum h 2π , has resisted
every attempt at modeling to date. The vector nature of
this boson is required, first of all, by the empirical selec-
tion rule ∆l = ±1, known as “Laporte’s rule” (Schiff
1955). This rule, together with angular momentum
conservation, requires j = 1 for the photon.

1.4. Minimal action and characteristic time

By and large, quantum mechanics deals with two
types of problems: internal and external. External prob-
lems include scattering, diffraction, and interference
phenomena and are not the aim of the present article.
Uniform linear motion, the trademark of a “free” sys-
tem, should rather be considered the exception corre-
sponding to an idealized model. The propagation of
photons in the absence of gravity comes closest to
Newton’s concept of inertial linear motion.

Internal problems deal with stationary states of bound,
periodic systems. In such systems, the concept of action
explains the existence of zero-point energies and of
characteristic eigenfrequencies. This is understandable,
recalling that there is no degree of freedom for kinetic
energy in the absolute minimum of a potential, and
therefore a lower limit of the kinetic energy is compul-
sory for dynamic systems. The prominent feature of
these bound systems is the quantization of action integrals in
general, and of angular momentum in particular. Rotation,
angular momentum, and magnetic moment are inherent
to matter at every level of organization. Although, in
some situations, the minimal action h may be negligible,
it is always finite on empirical grounds and therefore
“the classical limit h → 0” expresses a faulty philosophy.
In specific situations, h may be neglected, but it does not
vanish and cannot smoothly approach zero. The intrin-
sic angular momentum of macroscopic bodies averages
to negligible values due to their complexity rather than
due to their large masses as such. The situation is
reminiscent of the vanishing net magnetization of mac-
roscopic ferromagnets due to the complex domains-and-
walls structure. It is, however, known that such materials
display single domain behaviour below a critical size.

Every bound system seems to be governed by a per-
manent interplay between kinetic and potential energy

(the latter being the trademark of a bound system), the
energy conversion proceeding in such a way that the
product energy converted ∗ characteristic time ≡ action is
minimized. Physically, the characteristic time, τ a ,
(“action time”) is a much more relevant quantity than ad
hoc defined quantities like the “time required for light to
traverse the electron diameter” or the “Planck length”.
Barut (1992) arrives at a similar conclusion by defining
the Rydberg (for the Coulomb problem) as:

Ry h o≡ ν (12)

where ν o  denotes the characteristic frequency (≈ 10–15 s) of
the system. Solving the Schrödinger equation, he ob-
tains the frequency spectrum

ν ν
n

o

n
= 2  or ν ν νn m o m n

− = −FHG IKJ
1 1

2 2 (13)

The proportionality constant h in (12) is taken from ex-
periment. The wave equation determines all possible
frequencies of the system as in classical wave theory.

2. The dynamical foundation of wave me-
chanics

2.1 Waves and wave packets

De Broglie’s and Schrödinger’s wave mechanics is
based on a formal analogy between the principle of
Maupertuis (for particles) and that of Fermat for waves
in the geometrical optics approximation (Fermi 1955).
The phase ϕ ω= =kr t  of plane waves in optics with
k = ∇ϕ  and ω ∂ϕ ∂= t  the wave vector and circular
frequency, respectively, finds its correspondence by
means of Hamilton’s principal function S, which is La-
grange’s function integrated over the time interval τ a  of
action and thus defines a surface of action in configura-
tion space (Jammer 1966). Here we have ∇ =S p  and
∂ ∂S t E= −  for momentum and energy, respectively.
Using Planck’s relation

E = ω

and the proportionality between the (free) particle’s lin-
ear momentum p and the wave vector k of the associ-
ated wave

p k= (14)

we arrive at the wave-mechanical phase of a free particle

ϕ =
−

=
pr Et Sb g

(15)

Writing relation (1) in the proper frame of the parti-
cle with rest mass mo, where

E m co o= 2 (16a)
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holds, de Broglie (1925) introduced a mysterious
“periodic phenomenon” with the circular frequency

ω o
om c

=
2

(17)

and attempted to correlate this particle-internal frequency
with the particle-external frequency of the wave having
phase ϕ  as in Eq. (15). (Although—as we shall see in the
next section—he followed a defective procedure, his re-
lation (14) survived and has been overwhelmingly con-
firmed, especially in present-day microelectronics).

In order to overcome the localization problem, re-
course is taken to ad hoc wave packets, even in non-
dispersive vacuum. The concept of wave packets leads to
a definition of group velocity v kg ≡ ∂ω ∂  besides the
phase velocity v kp ≡ ω .

De Broglie (1925) postulated the validity of relation
v v cp g = 2  for both photons and particles with “proper
mass” mo, thus introducing the velocity of light, c, into
the dynamics of point masses. This procedure has to be
contrasted with the introduction of c into special relativ-
ity kinematics via the peculiar velocity measurement pre-
scription involving a clock and light-signals with equal
(by decree) to- and fro one-way velocities. To be spe-
cific, we therefore distinguish Kaufmann dynamics* and
Lorentz-Einstein kinematics. Once Kaufmann dynamics
is incorporated into the model, the mass-energy equiva-
lence (with E the total energy),

E mc= 2 (16b)

enters as a dynamical concept.
Eq. (16b) implies the velocity dependence of masses

(Galeczki 1994):

m v m
v
c

mo ob g = −
F
HG

I
KJ ≡

−

1
2

2

1
2

γ (18)

where v is a time-of-flight velocity to be identified with vg.
Inserting (16b) into (18), squaring, rearranging terms

and introducing p = m(v)v yields

E m c co
2 2 2 2= +d i b gp (19)

the basic equation of Kaufmann mechanics.
Using Eqs. (1) and (14) and the definition of ω o  in

Eq. (17), we reformulate Eq. (19) in the form:

ω ω2 2 2 2= +o c k (20)

which bears a mathematical resemblance to the hyper-
bolic dispersion relations known in “ordinary” wave
physics where ω  and k are continuous variables. In Eq.
(20), however, both ω o  and ω  designate discrete fre-
                                                                       
* High-velocity dynamics could rightly be named “Kaufmann me-

chanics” in the honor of its pioneer investigator. E = mc2 has
nothing to do with co-ordinate transformations, and necessarily
implies velocity-induced mass-change.

quencies “seen” in the rest system of the mass mo and by
an observer in relative motion.

Replacing the monochromatic “pilot wave” of the
particles by a wave packet, we extend Eq. (21) to continu-
ous variables ω  and k, according to Schrödinger, and de
Broglie and see that it is equivalent to:

v v
k k k

cp g = = ≡ω ω ωd
d

d

d

2d i
d i2

2 (21)

A hyperbolic dispersion relation like Eq. (20) is
found in various branches of wave physics, and, re-
markably, is a characteristic of a homogeneous isotropic
propagation medium (the “vacuum” being trivially ho-
mogeneous)** . In various homogeneous media, the hy-
perbolic ω kb g  relation holds for different values of v p and
different meanings of the “frequency gap” ω o . E.g., for
the propagation of transverse electromagnetic waves in a
dilute plasma, such as the ionosphere,

ω ε εp one m= 2
1

2d i  (with n the density of charges, e, and
ε εo  the permittivity of the medium) is the plasma fre-
quency. This, however, is in conflict with the kinematic
interpretation: if Eq. (20) were a consequence of special
relativity, c should be the one and only velocity of light
in vacuum. For free electromagnetic waves, there is no
frequency gap (mo = 0), and Eq. (20) degenerates into a
linear relation with vp = vg = c for all values of k.

2.2 The kinematic picture of de Broglie waves:
Lorentz-transformed oscillations lacking
Lorentz invariance

De Broglie’s mysterious “periodic phenomenon”
associated with mo was conceived as an oscillation in the
particle’s rest system:

ψ ωt A i to o o ob g b g= exp (22)

with to denoting the particle’s “proper time”.

                                                                       
** Processes in inhomogeneous media, such as electronic conduc-

tion in crystal lattices, are usually described by parabolic

( E k m= b g2 2 ) and sometimes by non-parabolic relations. For

instance, in narrow-bandgap semiconductors (InSb, Hg .8Cd.2Te)
the dispersion relation for conduction electrons has a more ex-
otic form:

ω ω ω= + + +LNM OQPk m P kg gb g d i2 2 22 1 2 8 3
1

2*  with m* ,

ω g , and P the electron effective mass, direct band gap, and the

Kane parameter, respectively.
In the limit of small values of k (k << 1/a with a the lattice pa-
rameter), the parabolic relation is a good approximation, because
the long wavelengths associated with the electron’s motion aver-
age over the atomic potentials and “see” a quasi-homogeneous
effective medium.
Propagation in a waveguide, although anisotropic, obeys hyper-
bolic dispersion with = ω c  the cut-off frequency. But here ω c
originates from geometry.
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Special relativity kinematics applies the Lorentz
transformation for an observer in relative motion who
now claims to “see” a wave instead:

ψ ωx t A i t
vx
c

, expb g = −FHG IKJ
RST

UVW2 (23)

with ω γω= o .
In electrodynamics, the Lorentz transformation is

known to turn an electric field E into a magnetic field B.
Similarly, here a stationary phenomenon is given a
seemingly dynamical quality, and an oscillation becomes
a wave. But strictly speaking, this is a pseudo-wave, be-
cause the spatial coordinate x is artificially introduced by
the transformation. No wonder that the phase of de
Broglie’s wave (23) is not proportional to the action S of
the free particle (S ≠ ϕ ), and that Eq. (14) is clearly
violated, since the phase velocity of the wave (23) equals
c²/v. To restore the equality S = ϕ , de Broglie and
Schrödinger had the (unfortunate) idea to replace the
monochromatic (plane) wave associated with a free par-
ticle with an unstable (in time) “wave packet” centered
around some value ko and to identify the particle velocity
v with the group velocity vg = c²/vp. The seeming success
of this procedure is due to the fortuitous coincidence
between vg = c²/vp—a formal consequence of the
Lorentzian kinematics of a point-like particle—and for-
mula (22) relating vp and vg for waves in a dispersive
medium. The price of this “success” is the undermining
of Planck’s formula (14) postulated for photons—quanta
of free electromagnetic fields—and extrapolated by de
Broglie for free particles with mo ≠ 0. Apparently, the
only way to save at once all three relations (1), (14), and
S = ϕ , is to replace de Broglie’s pseudo-wave (23) by a
monochromatic wave having its phase velocity equal to
the particle velocity v. Such a wave has indeed been pro-
posed by Wesley (1983b) who also remarked that the
combination of a harmonic oscillation and a translation
cannot produce a wave. The transformed Eq. (22) ac-
tually describes a standing wave, as is easily seen by put-
ting t x vo = .

The wave ψ  of Eq. (23) obeys the wave equation

v
tp

2
2

2 0∆ −
F
HG

I
KJ =

∂
∂

ψ (24)

with v c vp ≡ 2 . We emphasize that Eq. (24), like the
wave equation satisfied by the electric field E in a linear
isotropic medium (Post 1962):

∆ −
F
HG

I
KJ =εε

∂
∂o t

E
2

2 0 (25)

is obviously not Lorentz-invariant.

2.3. Interpretational problems in kinematical wave
mechanics

The fact that no quantum mechanical wave equation
has been correctly derived might explain the unsettled
interpretational problems of quantum mechanics even
now, 70 years after its inception. To support this state-
ment, we sketch several approaches to the Schrödinger
equation, since the time-independent equation—like de
Broglie’s relation λ = h p—seems to be correct despite
its questionable derivation:

Inverting ψ = a iSexpb g  and putting S =
−ih aln ψb g  into the Hamilton-Jacobi equation:

∂
∂
S
t

S

m
V r+

∇
+ =

e j b g
2

2
0 (26)

leads to a useless equation for the two unknown func-
tions ψ  and a.

Substituting p S= ∇  and ∂ ∂S t E= −  into Eq. (19),
we get

1
2

2
2

2

c
S
t

S m co
∂
∂

F
HG

I
KJ − ∇ =e j (27)

which is equivalent to one wave equation of the Klein-
Gordon type for ψ  and a.

Fermi (1955) assumed the harmonic time depend-
ence

ψ =
−FHG IKJu

iEt
exp (28)

and, after substituting ψ  into the wave equation

∇ − =2
2

2

2
1

0ψ
∂ ψ
∂v tp

(29)

he obtained the time-independent equation:

∇ +
−

=2
2

2
0u

m
E V ub g (30)

After employing the operator substitution
Eu i t→ ∂ψ ∂ , he finally arrived at the time-
independent Schrödinger equation

−
= −

i
t m

V
∂ψ

∂
ψ ψ

2

2
∆ (31)

Curiously enough, the Lorentz-invariant Klein-
Gordon equation

v
t

m c
p

o2
2

2

2 2

0∆ − −
F
HG

I
KJ

L
N
MM

O
Q
PP =∂

∂
ψ (32)

was obtained from relation (19) which holds for point-
like particles rather than for waves. Applying the same
operator approach to the classical relation
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E
m

=
p2

2
(33)

one obtains Schrödinger’s time-dependent equation,
which is not a wave equation at all! There is no way to
transform a hyperbolic equation with partial derivatives,
like Klein-Gordon, into a parabolic type equation, like
the Schrödinger equation. The “derivation” of
Schrödinger’s time-independent equation from Eq. (24)
is an artifact of the unique exponential time-dependence
of the wave functions, as stipulated in the axiomatic
formulation of the theory.

In their famous quantum mechanics textbook, Lan-
dau and Lifshitz stipulate from the very beginning that
the wave function ψ  has to obey the operator equation

i
t

L
∂ψ
∂

ψ= (34)

(with L a linear operator) rather than a wave equation.
Using the expression ψ = a iS hexpb g—which they call
a “quasi-classical wave function”—they obtain the quasi-
classical form

∂ψ
∂

∂
∂ ψt

i S
t

= (35)

Further, they assume that a is a slowly varying function
of t and identify L from Eq. (35) with the Hamiltonian
operator H.

Although aware that Schrödinger’s time-dependent
equation is of the parabolic type, Bohm, while develop-
ing his “causal quantum mechanics” (Bohm and Hiley
1989), took it for granted. He used the already men-
tioned quasi-classical form of ψ , substituted it in
Schrödinger’s time-dependent equation. and, after
separating the real and the imaginary parts, obtained the
following equations:

∂
∂
S
t m S

V
m

a
a

+
∇

+ −
∇

=
1

2 2
02

2 2

b g (36a)

∂

∂

a

t
a S

m

2 2

0
d i

+ ∇
∇

= (36b)

In Bohm’s opinion—to be contrasted with that of
Landau-Lifshitz—the classical Hamilton-Jacobi equa-
tion is obtained for “slow spatial variation” (as compared
to S) of a rather than for h = 0. The formal analogy of
(36b) with the continuity equation suggests that it be
regarded as describing the conservation of probability P ≡
a² in the ensemble of trajectories normal to the wave-
front S = const. with momentum p = ∇S . In Bohm’s
and Hiley’s words, “we are led to the causal interpreta-
tion of the quantum theory if we notice that the same
picture can hold if we do not make the quasi-classical
(JWKB) approximation, but simply suppose that in ad-

dition to the classical potential V, the particle is acted on
by a further quantum potential

Q
m

a
a

≡ −
∇2 2

2
 ” (37)

The peculiar quantum-mechanical phenomena are all
attributed to the existence of Q. Bohm has, however,
not solved the equations for specific situations like the
double-slit experiment. Bohm traced qualitatively—but
never quantitatively—the causal motion of a particle
acted upon by the quantum potential. The cause of the
fundamental difficulty found in the work of de Broglie
and Bohm is their false presumption that the implication
of Schrödinger’s equation is solely statistical. A related
problem which we shall discuss in a forthcoming paper,
is the failure in present-day quantum mechanics to dis-
tinguish between a given system of N particles and an
ensemble of N similar one-particle systems of which
each member is independent of the others. This failure
leads to a paradoxical prediction when one tries to apply
Pauli’s exclusion principle to electrons belonging to dif-
ferent atoms. According to this principle and to the
(widely accepted) statistical interpretation of quantum
mechanics, the intensity of any spectrum line observed
in a hydrogen gas would be extremely weak, because
only one of the numerous atoms is permitted to be in
one energy eigenstate at a given time.

While the action S, which plays the role of a general-
ized phase hϕ  in the above considerations, more or less
tacitly has its share in the wave models, its physical rele-
vance is not fully acknowledged in the kinematical
treatment of wave mechanics. From the phase expres-
sion ϕ ω= −kr t , kinematics chooses the co-ordinates
(r,t) for a description of physical wave phenomena in-
stead of the wave parameters (k,ω ). There is no way to
construct a dynamical description from time-space ge-
ometry.

Summarizing, de Broglie waves, derived via the
Lorentz transformation, are devoid of physical meaning,
because they lack basic requirements of dynamics. No
wonder, they have been given the abstract meaning of
probability waves! However, according to Kolmogorov’s
axiomatic formulation (Kolmogorov 1936, Gnedenko
1969), probabilities cannot interfere. In order to escape
the problem of localization, the picture of ad hoc wave
packets is adopted whenever suitable. But this is done at
the cost of having to understand or postulate dispersion
in free space. Yet, as is well known, the application of a
de Broglie wavelength λ = h mv does work for the descrip-
tion of results in scattering, diffraction, and interference
experiments. In order to bring us closer to a physical
picture, wave dynamics should replace Einstein-Lorentz
kinematics. This is tantamount to replacing the space-
time invariant r2 2− ctb g  à la special relativity by the in-
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variant ω 2 2− ckb g  built up from quantities characteriz-
ing wave propagation.

2.4. Action dynamics vs Einstein-Lorentz kinematics

Looking back to the analogy between Hamilton’s
principal function S and the phase ϕ ω= −kr t  in plane
waves:

∇ =S p  and 
∂
∂
S
t

E= −  ⇔ k = ∇ϕ  and ω
∂ϕ
∂

=
−

t
,

we recognize that action S and phase ϕ are related by

S = ϕ (38)

Consequently, surfaces of constant phase correspond
to those of constant action. This important correspon-
dence urges us to re-interpret de Broglie waves as spatial
patterns of action. Doing this, we have avoided the intro-
duction of space-time coordinates as dynamical quanti-
ties, which they are not. They are the mathematical pa-
rameters of mechanics, and as such cannot have any
physical influence. The phase ϕ ω= −kr t  tells us that
kinematics chooses the non-physical part (r,t) of the vari-
ables. Space-time coordinates are not the properties of
any physical system, but serve as parameters for the de-
scription of true physical properties such as wave vector
and frequency. It is those properties which change upon
transformation into a moving frame of reference and
which represent momentum and energy. If one selects
the physical pair (ω,k ) of the variables, the invariant of
the Lorentz transformation is replaced by

c ck kb g b g2 2 2 2− = ′ ′ − ′ =ω ω inv (39)

Wesley (1980) proposed this replacement on account of
the description of the Michelson-Morley experiment as
a Voigt-Doppler effect in absolute space .

The value of the active interpretation of de Broglie
waves in terms of action lies in the fact that the motion of
the particle has not to be assumed ad hoc, as in the kine-
matic description where mathematical coordinates are
given an active role. Usually, the motion is taken for
granted and its cause is ignored. Léon Brillouin (1970)
rightfully puts his finger on this critical point in his book
Relativity Reexamined: “What do we mean by a given ve-
locity? Who gives us this velocity and how... There is
only one occasion when it has a definite meaning; this is
in the statement of a problem given by an examiner to
some helpless students.” In the action picture, the cause
of motion, namely the conversion of different forms of
energy into each other, is the firm basis of a dynamical
description. Action also helps to get rid of the uneasy
feeling associated with uniform linear motion and the
associated plane wave of infinite extent. Clearly, uniform
motion, an idealization holding only in a space with
strictly constant potential, is always a more or less valu-

able approximation, and certainly does not hold in the
realm of microphysics where potentials change very
rapidly with time and space. If uniform motion were
typical of quantum particles, the quantum of action, h,
would scarcely show up in an experiment, as action
vanishes under the condition that potential energy does
not participate in the balance. Also in the macroscopic
world, uniform motion is, rather, the exception (if ever
realized at all!).

2.5. Discussion and conclusions: matter waves are
Action Waves

Nature has chosen the wave as a means of transporting
energy with a minimum transport of masses and charges; see
electromagnetism, acoustics, and heat transport. It ap-
pears that even dc currents in conductors, since Drude’s
time a symbol of “free” charge transport, can be modeled
in terms of wave transport: Graneau (1985) proposed a
dc conduction mechanism based on pivoted dipole current
elements. No one doubts that the phase of a wave consti-
tutes a physical reality, which itself does not transport
mass or energy but is a necessary “ingredient” for trans-
port. Similarly, action, behind the ubiquitous energy
conversion observed everywhere in Nature, is a phe-
nomenon that can propagate with a phase velocity, ω k ,
and describes the changes of local energy balances with
space and time. As any wave is accompanied by energy
conversion, action must be thought of as the generalized
phase of all wave phenomena. This, in turn, suggests that
we should also apply the idea to other dynamical phe-
nomena which at first glance are not wave-like, e.g., the
motion of a particle in a varying potential. Hence, we
have found a quite natural way to save the basic idea of
de Broglie waves without having to grapple with the
conceptual difficulties of probability interference and
non-causal events in macroscopic regions of space. A
particle does not manifest “wave nature” by itself. It is its
motion with respect to the local potential that gives rise
to wavy disturbances in its surrounding. These wiggles
in the potential are detected by experiment; they are an
honest-to-goodness physical effect. For a probabilistic
Born-de Broglie wave, it is hard to understand how(if at
all) the abstract phase velocity vp of a probability pattern
could contribute to the energy of a particle, for if we ac-
cept the general agreement that vpvg ≡ c² holds for de
Broglie waves, then Eq. (16b) reads E mv vp g= —which
would be a rather peculiar mixture of physical and non-
physical velocities. The propagation of action, on the
other hand, does contribute to the energetic processes.
Local disturbances of potentials propagate in space and
time and mediate between more or less local changes of
kinetic energy and their interaction with the surround-
ings.

Potentials are the spatial part of energy, and no wave
propagation would be possible without them. The wave-
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external potential for electromagnetic waves remains to
be specified. It is certainly not an “ether” with contradic-
tory properties, nor is it empty space represented by the
mere mathematical construction of space-time coordi-
nates which are devoid of any physical significance. In
our preceding paper (Marquardt and Galeczki 1994), we
pointed out that a physically significant coordinate corre-
sponds to a potential with finite spatial extension, and
that the purely mathematical “position operator” is
meaningless, to say nothing of “position” in the manner
of a point in space. Similarly, one has to differentiate
between the continuous, algebraic “time parameter”—
which can by no means “contract” or “dilate”—and time
as “rate-of-physical processes”. Cyclic periodic processes
allow us to define units of time (“periods”), which are, of
course, subject to dynamical changes. In terms of these
units, various physical processes could show “slowing
down” or “speeding up” without any system-internal
change. Time inevitably involves the change of a state in a
potential by virtue of kinetic energy (keeping in mind,
that uniform motion is always an approximation, and
that the state of rest is the consequence of our choice of
a reference frame). The same argument applies to our
very measurements of “time” which are based on peri-
odic changes of position in a potential, and hence on ki-
netic energy. The latter can always be associated with a
frequency, which is a characteristic property of the sys-
tem in question. Action S is the principle that combines
both the “energy of position” (“energy in space”) and the
“energy of velocity” (“energy in time”). In order to keep
the discussion within the usual framework of the
Hamilton formalism, we consider conservative systems
only (i.e. without dissipation) whose total energy E does
not depend on time and is fully determined by the two
basic types of energy, positional and kinetic. Now action
waves can be modeled from the gradients. The spatial
gradient ∇ =S p  describes the conversion of momen-
tum, i.e. of kinetic energy into or from potential energy,
depending on the sign. (This is in accordance with
Newton’s force principle and the fact that conservative
forces can be traced back to the gradient ∇V  of a poten-
tial). Vice versa, the gradient in time ∂ ∂S t E= −  is de-
termined by the negative total energy (note the minus
sign) of the system, i.e. equal amounts of energy are con-
verted in equal action time intervals. The significance of
the gradients lies in the fact that they tell us about the
possibility of action propagation like that of a monochro-
matic physical wave, with p determining the
“wavelength” and E the “frequency” of this wave. In-
deed, by virtue of Eq.(19), identifying momentum and
total energy with the gradients ∇S  and ∂ ∂S t , respec-
tively, we arrive at the Klein-Gordon Eq. (32), this time
formulated for S, rather than for an abstract probability
amplitude ψ . Now we have a wave equation for action
that is compatible with Kaufmann dynamics. The term

m co
2 2d i  that makes it an inhomogeneous wave equa-

tion represents the “rock bottom” potential energy that
cannot further be converted into kinetic energy. A
“monochromatic” action wave in a conservative dynami-
cal system represents perpetual energy conversion in its
simplest form, i.e. when those processes occur periodi-
cally in space and time. In a forthcoming paper, we ex-
tend this model to dissipative processes.

Strangely, it is never asked why different forms of
energy can change into one another, or whether our dis-
tinction of these different forms is justified or purely
phenomenological. Is there basically only one energy
showing different aspects? Action provides the unifying as-
pect, and we may indeed envisage kinetic and potential energy as
linked by gradients of one quantity in time and space.

In conclusion, by replacing mathematical coordinates
by physically active wave parameters, matter waves can
be re-interpreted on a dynamical basis as patterns of ac-
tion in time and space. Action plays the role of a general-
ized phase in physics, and as such allows us to describe
the cause of observed phenomena instead of contenting
ourselves with a formal coordinate transformation. Ac-
tion is brought into agreement with causality and the
interpretation of experimental observations is rid of the
notorious difficulties associated with probabilities.
Planck’s action quantum relates wave properties that are
not a priori quantized ω ϕ,kb g  to the “steps” Nature has
chosen for all dynamical processes.

The gradients which are essential for dynamics are
always finite. Localization, e.g., of an electron in a box, is
usually treated in a probabilistic manner, indicating that
the electron itself is admittedly smaller than the box, yet
needs the whole space for its motion. The action con-
cept tells us why: confinement determines the range of
action in this problem, and electron motion covers all
the space. This is no more probabilistic than the local-
ization of a vibrating string! The action picture also indi-
cates where the often-used quantum box model is
grossly oversimplified: neither a classical nor a quantum
particle could move in a region of strictly constant po-
tential with infinite gradients on either side.

It is noteworthy that the principle of action helps us
bridge the (artificial) gap between classical and quantum
physics, since it applies to any physical system, irrespec-
tive of its size and nature. Here, we believe, lies its
greatest merit.
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