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A Formulation of the Gravitational Equation of Motion
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Department of Physics
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According to Einstein’s principle of equivalence, inertial forces in an accelerated reference system
are equivalent to the existence of a gravitational field. In order to formulate the gravitational force
as well as inertial forces in explicit form, we introduce two conditions into the 4-D line element
and transformations. As a consequence, the equation of motion for gravitational force or inertial
force has a form similar to the equation of Lorentz force on a charge in electrodynamics. The in-
ertial forces in non-inertial systems are calculated for two special cases: a uniformly accelerated
system, and a uniformly rotating system.

PACS: 04.20., 04.50

1.  Introduction

In general relativity, space-time coordinates can be
chosen arbitrarily (Einstein 1916, 1955). However, in or-
der to get unique solutions of the Einstein field equation,
certain coordinate conditions must be imposed. Two re-
cent examples (Duan 1992, Torre 1992) have discussed
the choice of coordinate conditions. In this paper, we
emphasize that constraints on coordinate conditions are
imposed by the principle of equivalence.

Einstein (1916) illustrated the principle of equivalence
using the following simple example. Let Σ  be an inertial
reference system; let another system K be uniformly ac-
celerated with respect to Σ . Then relative to K, all free
bodies have equal and parallel accelerations. They behave
just as if a gravitational field were present and K were un-
accelerated. In order to formulate the above simple
equivalent gravitational field suggested by Einstein, let us
start with an inertial system Σ . Let X µ =
cT X Y Z cT, , , ,b g b g= R  be the pseudo-Cartesian coordi-

nate in the system Σ . Then the 4-D line element takes a
form

d d d d ds c T X Y Z2 2 2 2 2= − − −b g (1)

We now consider a system K with coordinates xµ =
ct x y z x, , , ,b g d i= r , which has a constant acceleration, a,

with respect to Σ . Since the Lorentz transformations are
not valid between Σ  and K, the following quasi-Galilean
transformations are usually introduced (Møller, 1972)

R r a= + =
1
2

2t T t; (2)

A simple calculation for Eqs.(1) and (2) gives
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We substitute these components of gµν  into the geo-
desic equation
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In the case of a low velocity approximation, Eq.(4) re-
duces to d d2r at2 = − . This indicates that a free particle
with a rest mass mo in a uniformly accelerated system
should experience a uniformly inertial force −moab g . Al-
though this result is well known, the above calculation
shows that certain constraints on space-time coordinates
and transformations should be imposed by the principle
of equivalence.

2. Two Proposed Conditions Based on the
Principle of Equivalence

We propose the following two conditions in our for-
mulation:

(i) In any reference system, the 4-D line element takes a
standard form

d d d d d 2s x xo
2 2

2= − ⋅ −Ψ Ψd i c hr r (5)

Comparing Eq.(5) with d d ds g x x2 = µν
µ ν , we have

goo o= Ψ , goi i= −Ψ , gij ij= −δ .
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(ii) Between two reference systems, K and K', the value of
ds2  is an invariant, but space-time coordinates take
infinitesimal Galilean transformations

d d d′ = − ′ =r r v t t t; (6)

where v v r= ,tb g  is the 3-D relative velocity between
two systems K and K'.

The physical implication of the above proposed
conditions is as follows: Weinberg (1972) has emphasized
that a local gravitational field has two kinds of sources.
One is nearby mass; another is all the mass in the uni-
verse. We can anticipate that the inertial systems are de-
termined by the mean background gravitational field
produced by all the matter of the universe. This back-
ground gravitational field provides a base for us to pro-
pose the above two specific conditions.

In Eq.(5), Ψo and Ψ  are components of metric tensor
gµν . They have properties of gravitational potentials, but
they do not form a 4-D vector. From Eq.(6), it is easy to
derive the transformations of these potentials

′ = − − ⋅ ′ = +Ψ Ψ Ψ Ψ Ψo o
v
c c c

2

2 2
v v

; (7)

These transformations form a group with parameter v.

3.  Gravitational Equation of Motion

In this section, we will rewrite the general equation of
motion, Eq.(4), into an explicit form in terms of the pro-
posed two conditions. We consider the variational prin-
ciple (Landau 1975)

δ δ− =z zm c s L x u t to
i ib g d id d, , (8)

where L x u ti i, ,d i  is the Lagrangian. Using Eq. (5), we
obtain

L x u t m ci i
o o c

u
c

, ,d i d i= − − ⋅ −2 2 2

2Ψ Ψ u (9)

where u r= d dt  is the velocity of a particle in system K.
Let Ψo = +1 2φb g . Substituting the Lagrangian (9)

into the Lagrange equation (Landau 1975),
d dt L∂ ∂ub g = ∂ ∂L r , we obtain the equation of mo-
tion:
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where g and h are defined as
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Here, g is gravitational intensity and h is a magnetic-type
gravitational intensity. Both have units of cm sec–2.
Therefore, the gravitational force is analogous to the
Lorentz force on a charged particle in an electromagnetic

field except for two different terms: (i) a moving mass

m mo= Γ , where Γ =  Ψ Ψo c u c− ⋅ −
−

2 2 2
1

2ub g ; (ii) a
small additional term on the left side of Equation (10),
which is related to the changing rate of a moving mass.
Eq.(10) is our formulation of the gravitational equation of
motion, which is also valid to describe a magnetic-type
gravitational force as well as the inertial force in non-
inertial systems.

4.  Inertial Force in Accelerated Systems

(a) A Uniformly Linear Accelerated System

In the introduction of this paper, we discussed the
inertial force in a uniformly linear accelerated system.
From Eqs.(3) and (5), we have φ = − 1

2
2 2 2a t cd i ,

Ψ = at c . By using Eq.(11), we obtain

g a h= − = − =c
t

∂
∂
Ψ

; 0 (12)

Notice that this equivalent gravitational intensity g in
Eq.(12) is produced by the 3-D gravitational vector po-
tential.

(b) A Uniformly Rotating System

Suppose a uniformly rotating system has a constant
angular velocity Ω Ω= k  with respect to an inertial sys-
tem Σ . Let the infinitesimal Galilean transformation be

d d - dr R R= × =Ωd i T t T; (13)

Substituting Eq.(13) into (1), we obtain the 4-D line
element in this rotating system K as follows:
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From Eq.(14), we have φ = − ×1 2 2 2c Ω rb g ,
Ψ Ω= × r cb g . Using Eq.(11), we obtain

g r r h r= ∇ × = = ∇ × × =
1
2

22 2Ω Ω Ω Ωb g b g||; c (15a,b)

where r i j|| = +x y . Eq.(15a) gives the centrifugal force,
Fa =  m mg r= Ω2

||, in the rotating system, while Eq.(15b)
also gives the Coriolis force, F u h ub m c m= × = ×2 Ω .
Therefore, the Coriolis force is produced by a magnetic-
type gravitational intensity.

5.  Summary

Generally speaking, the gravitational equation of mo-
tion Eq.(10) has a form similar to the equation of the
Lorentz force on a charge in electrodynamics. On the
other hand, the gravitational potentials Ψo and Ψ  do not
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form a 4-D vector. This property is different from the
electromagnetic potentials in electromagnetic fields. In
our formulation, the gravitational equation of motion has
a 3-D vector form. Therefore, in a given reference sys-
tem, one still has freedom to choose 3-D curvilinear spa-
tial coordinates. For further investigation, the gravita-
tional field equations and other related problems in terms
of the two proposed conditions will be studied in another
paper.
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