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Fitzgerald Contraction, Larmor Dilation,
Lorentz Force, Particle Mass and Energy

as Invariants of Galilean Electrodynamics
H.E. Wilhelm
Department of Materials Science and Engineering,
University of Utah
Salt Lake City, Utah 84112

By means of the generalized, Galilei covariant Maxwell equations for inertial frames

Σ(r,t,w) with substratum velocity w, Fitzgerald contraction = − −o oc1 2 2
1

2

v wb g  of rods,

Larmor dilation τ τ= − −o oc1 2 2
1

2

v wb g  of clock periods, and velocity dependence of particle

mass m m co o= − −1 2 2
1

2

v wb g  are shown to be Galilei-invariant vacuum substratum effects,

where v w v inv− = °=  is the respective object velocity relative to the substratum frame Σ
 (r°,t°,0). The Lorentz force transferred through the substratum is Galilei-invariant,
F = e[E°+ w × B + (v – w) × B ] = e(E° + v° × B°) = inv. The kinetic energy K(v°) of
high-velocity particles is given by the Galilei-invariant mass-energy relation
K(v°) + Eo = mo(v°) co

2 , where Eo = mo co
2  (mass-energy equivalence). The Galilean meas-

urement process in inertial frames Σ(r,t,w) is explained considering physical length con-
traction of measuring rods and rate retardation of measuring clocks, as well as synchroniza-
tion of clocks in absolute time. Crucial experiments underlying Galilean electrodynamics are
discussed briefly.
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Introduction

The concepts of Maxwell, Fitzgerald, Larmor, Hertz,
Heaviside, and others concerning the propagation of elec-
tromagnetic (EM) waves in the “luminiferous ether” hid-
den in the vacuum (Whittaker 1954) have been vindicated
through recent experiments. The experiment of Penzias
and Wilson demonstrates that the universe is filled with a
uniform and isotropic (at large) 2.7° K microwave back-
ground (Penzias and Wilson 1965). Measuring this back-
ground EM radiation (excitation of vacuum substratum)
makes the verification of an absolute reference frame ΣΣ° (its
origin and directions of coordinate axes can be chosen arbi-

trarily) possible everywhere in the universe. If in an obser-
vation frame the cosmic microwave radiation is found to be
isotropic in intensity, then this frame is an absolute space
frame ΣΣ°. In inertial frames ΣΣ which move relative to ΣΣ°
with a constant velocity u°, the observed microwave radia-
tion is anisotropic, as first shown by Conklin (1969) and
Henry (1971), i.e., these are not absolute space frames.
These experimental facts alone refute the special theory of
relativity (STR) which rests, inter alia, on the experimentally
unconfirmed hypotheses that (i) all inertial frames are
physically equivalent and (ii) no distinguished reference
frame exists (Whittaker 1954).
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The nonobservation of the ether in the Michelson-
Morley experiment is due to a compensation of the length
contraction (first proposed by Fitzgerald (Whittaker 1954))
and time dilation (first proposed by Larmor (Whittaker
1954)) effects in the ether flow on the Earth. In spite of this,
the Michelson-Morley experiment has been used to this
date to justify the STR postulates of the nonexistence of the
ether and a preferred inertial frame ΣΣ° (with EM wave car-
rier at rest). Builder (1958a,b) and Janossy (1953, 1964, 1967,
1971) further developed the length contraction and time
dilation concepts in the ether, and arrived at the conclusion
that their “physical relativity theory” is in agreement with
the STR. This reasoning is strange since the STR is based on
the assumption of the validity of Maxwell’s equations in all
inertial frames, or the physically equivalent assumptions of
(i) the constancy of the velocity of light co in all inertial
frames, or (ii) the absence of an EM wave carrier in the vac-
uum. The STR proposes that all physical effects are relative
to the observer, i.e., they depend on the velocity v of the
microscopic or macroscopic system relative to the observer.
Its main accomplishment is the replacement of the unique
physical reality of any physical system, and even of space
and time, by a multitude of contradicting system
“perspectives” limited only by the number of actual or
imagined observers.

For the above reasons, it became necessary to reinvesti-
gate the relativistic foundations of modern physics, from
the point of view of absolute space and time and an ether
(Wilhelm 1984, 1985a). The latter concepts lead to general-
ized, Galilei (G) covariant Maxwell equations, which are
based on two experimentally supported hypotheses,
namely the validity of (i) the ordinary Maxwell equations
in the EM wave carrier frame ΣΣ° and (ii) the Galilean trans-
formations for the absolute space and time coordinates be-
tween arbitrary inertial frames, ΣΣ(r,t,w) ↔ ΣΣ′′(r′,t′,w′), with
substratum velocities w and w′, where u = w – w′ is the
velocity of ΣΣ′ relative to ΣΣ (Wilhelm 1984, 1985). We show
that rod contraction, clock retardation, Lorentz force, parti-
cle mass and energy are not relative to the (noninteracting)
observer (ΣΣ, v) but relative to absolute space and the vac-
uum substratum (ΣΣ°, v – w). These G-invariant effects (v –
 w = v° = inv) are in accord with experience, since the
physical state of a system can be changed by moving it
relative to the substratum and the masses of the universe
(sources of physical interactions). Herein, “G-invariant” or
“= inv” always means “G-invariant with respect to choice
of the inertial frame of observation.” The formulae of the
STR are recovered as a special case (i) rigorously valid in
the substratum frame ΣΣ°(w = 0) or (ii) approximately in
quasi-ether frames ΣΣ(|w| << co), such as terrestrial frames
with substratum velocity w ≈  3 × 105 m/s << co (Conklin

1969; Henry 1971). The conclusions of other authors

(Builder 1958a,b; Janossy 1953, 1964, 1967, 1971) that the
ether and absolute space-time concepts support special
relativity cannot be confirmed since v – w ≠ v for all inertial
frames ΣΣ ≠ ΣΣ°.

G-covariant electrodynamics has been applied with
success to radiation phenomena including Cerenkov ra-
diation (removal of relativistic paradoxes) (Wilhelm 1985,
1990a,b, 1991, 1992a), anomalous unipolar induction in
corotating conductor-magnet systems (Wilhelm 1992b),
and a consistent formulation of G-covariant quantum me-
chanics in EM fields (Wilhelm 1985b). Here, we apply the
generalized Maxwell equations (Wilhelm 1984, 1985a) to a
physical, paradox-free explanation of length contraction,
clock retardation, Lorentz force, particle mass, energy, and
dynamics at high velocities. Galilean electrodynamics is
supported by the cosmic microwave experiments (Penzias
and Wilson 1965; Conklin 1969; Henry 1971), the effects of
Sagnac (1913) and Aharonov-Bohm (Aharonov and Bohm
1959), the dielectric Cerenkov effect (Wilhelm 1992a), and
anomalous induction in homopolar generators without
relative motion between conductor and magnet (Wilhelm
1992b; Kennard 1917; Mueller 1987). In a forthcoming
communication, G-covariant electrodynamics will be
shown to explain all known EM experiments, including the
interferometer experiments of Fizeau and Hoek on the
speeding up and slowing down of EM waves by moving
dielectric media (Wilhelm 1993).

Physical Length Contraction

A particle of charge e moving with a constant velocity v
in an arbitrary inertial frame ΣΣ(r,t,w) with z-axis chosen to
be parallel to the invariant vector v – w = v°, excites in the
vacuum substratum a transient EM field, the electric po-
tential of which is given by Wilhelm (1990a)
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The surfaces of constant electric potential Φ(x,y,z,t) of the
uniformly moving (v) charge in the inertial frame ΣΣ(r,t,w)
with ether velocity w are the ellipsoids of revolution about
the z-axis (Wilhelm 1990a)
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which are centered at the instantaneous position r = vt of
the charge. In Equation (2), the z-axis is in the direction of
the G-invariant vector
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v w v inv− = °= (3)

which represents the charge velocity relative to the ether
(same value for observers in all inertial frames). It is seen
that the ellipsoid axis parallel to the invariant charge veloc-
ity v° (z-direction) in the ether is shortened by the dimen-
sionless factor
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Since matter consists of positive (nuclei) and negative
(electrons) charges, the contraction (4) of their equipotential
surfaces (2) in the direction v – w = v° = inv causes, in
equilibrium, a Fitzgerald contraction of the extension (0) of
bodies in the direction of their velocities v° = v – w relative
to the ether:
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By Equation (3), the body extension 0b g  is a G-invari-

ant, i.e., has the same extension for observers in different
inertial frames. The formula (5) indicates that length con-
traction of bodies is not relative to the observer (STR) but
has absolute meaning relative to the vacuum substratum. A
rod has its largest length o when at rest in the ether (ΣΣ°)
and a shorter length  < o when moving with a velocity v°
relative to the ether frame ΣΣ° (or with a velocity v = v° + w
in an inertial frame ΣΣ).

The corresponding STR formula 0 1 2 2
1

2b g d i= −o ocv ,

where o = (v=0) is the “proper” length measured in the
body frame, has given rise to paradoxes, since observers
with different velocities relative to the body are supposed
to measure different extensions for one and the same body.
E.g., for two identical rods attached to two physically
equivalent inertial frames ΣΣ and ΣΣ′ (moving with constant
relative velocity u), the observer in ΣΣ claims that his rod has

the length o and that in ΣΣ′ the length = −o oc1 2 2
1

2ud i ,

whereas the observer in ΣΣ′ asserts that his rod has the

length o and that in ΣΣ the length ′ = −o oc1 2 2
1

2ud i . This

contradiction is exacerbated by the fact that the STR cannot
decide which of the two identical rods is longer or shorter,
since the two inertial frames are completely equivalent in
the empty STR vacuum.

Such physical impossibilities do not exist in G-covariant
electrodynamics, since two identical rods moving with a
constant velocity u relative to each other have different
velocities v1 2,

o  relative to the ether and, therefore, different

invariant lengths  and ′. The STR suggestion that the
length of a rod depends on its velocity v relative to the
observer is physically untenable, if only for the reason that
the observer velocity is arbitrary and the observer does not
interact with the rod.

Let us calculate the length θb g  of a contracted rod that

forms an arbitrary angle θ  with its velocity v – w = v° rela-
tive to the ether (ΣΣ°) as depicted in Figure 1. By Equation (5)
and Figure 1 ( designates projection in the direction of v°)
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where θ o  is the angle the uncontracted rod forms with the
direction of v°, Figure 1. By elimination
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From Equations (9) and (10) the length of a contracted rod,
moving under an angle θ with its velocity v° relative to the
ether frame ΣΣ°, follows as

Figure 1. Contracted rod θb g forming angle θ with absolute velocity

v° .
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By Equation (9) and v – w = v° = inv, the length of a rod
moving with an arbitrary inclination relative to its absolute
velocity v° in the ether is a G-invariant, i.e., has the same
length for observers in different inertial frames. In particu-

lar, 0 1 2 2
1

2b g b ge j= − −o ocv w  and (π/2) = o.

Physical Clock Retardation

A clock can be realized by two mirrors held apart by a
rod, between which a light signal is reflected back and
forth (Janossy 1953). The theory of a light clock moving
with an arbitrary angle relative to its absolute velocity was
first worked out by Janossy under consideration of
anisotropic light propagation (Janossy 1964, 1967). Since the
velocity of a light flash in the ether frame ΣΣ°(0) is isotropic,
c°(ϕ°) = co, the velocity of this light flash in an arbitrary
inertial frame ΣΣ(w) with ether velocity w is anisotropic, c(ϕ
) = w + c°(ϕ°). Accordingly

c cϕ ϕ ϕ ϕ ποb g d i= − + ≤ ≤2 2 2
1

2 0w wsin cos , (12)

where ϕ is the angle between the light velocity c(ϕ) and
the ether velocity w. In particular, c(0,π) = c ± w
(propagation downstream and upstream relative to the

ether flow) and c (π/2) = co
2 2

1
2− wd i . The corresponding

velocities c±(θ) for light propagation up (+) and down (–)
the rod are by Figure 1 (Janossy 1964, 1971)

c c± = − ° − ± ° ≤ ≤θ θ θ θ ποb g d i c h2 2 2
1

2 0v vsin cos , (13)

where θ = π – ϕ is the angle between the contracted rod
and its velocity v° relative to the ether.

The period of the light signal reflected back and forth
between the mirrors of the light clock moving with a veloc-
ity v° relative to the ether is, for an arbitrary rod-angle θ
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by substitution of c±(θ) from Equation (13) into Equation
(14) and (θ) from Equation (11) into Equation (15), respec-
tively. Equation (16) gives the period of a light clock with
arbitrary orientation θ, and velocity v° in the ether. The
corresponding rate of the light clock moving under an
arbitrary rod angle θ with its velocity v° relative to the
ether is

ν νο
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inv (18)

The clock period (16) and clock rate (18) are independ-
ent of the orientation of the clock in space since the period
is derived from a 2-way light path in the clock. The period τ
and rate ν are G-invariants, i.e., a given clock has the same
period and the same rate for observers in different inertial
frames.

The G-invariance of the clock period or rate is the nec-
essary condition for the absolute nature of time in all iner-
tial frames, t = t′ = t° = inv. The spatial independence of
time is readily verified in the ether frame ΣΣ°, since light
propagates there isotropically with the speed co. Hence, in
the ether frame ΣΣ° we can synchronize fixed clocks B with a
fixed clock A by means of light signals through the relation

Σ ∆ ∆° = + = −20b g b g: ,t t t t t1
1
2 3 1 (19)

where t2 is the local time with which the clock at B has
been set, at the instant the light signal emitted at the local
time t1 by the clock at A arrived at B. Whereas t3 is the local
time recorded by the clock at A at the instant the light
signal reflected by B arrived. Since in the ether frame ΣΣ° the
light travel time for the paths A→B or B→A is measured as
∆t  = ½(t3 – t1), the absolute time t exists simultaneously at
the fixed points A and B, if the B-clock is set to the known
time t2 at the instant when it receives the light signal emit-
ted from A at time t1.
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Synchronization of fixed, distant clocks is more in-
volved in inertial frames ΣΣ(w) with ether flow, since in this
case light propagates anisotropically with velocity c(ϕ) be-
tween the fixed locations A and B of the clocks by Equation
(12). In an arbitrary inertial frame ΣΣ(w), clocks at points B
are synchronized with a clock at A as before through light
signals via the relation

Σ ∆( ): = + ( )2 1w t t t ϕ (20)

∆t AB
c

ϕ
ϕ

b g b g= (21)

where the contracted (w ≠ 0) distance AB  between the
clocks at A and B is measured by means of measuring rods
(see Galilean Measurement Process). The light velocity c(ϕ)
is given by Equation (12) where ϕ is the angle between the
direction A→B of the light signal and the ether velocity w
in ΣΣ(w), e.g., c(ϕ) = co ± w if A→B is parallel or antiparallel
to w. It is seen that the ether velocity w has to be known by
magnitude and direction for clock synchronization in iner-
tial frames ΣΣ(w) with anisotropic light propagation. If A→B
is perpendicular (ϕ = π/2) to the ether velocity w, the syn-
chronization correction ∆t(ϕ) = ½(t3 – t1) can be deter-
mined from the 2-way (A→B→A) travel time (t3 – t1) re-

corded by the clock at A, since c(ϕ) = co
2 2

1
2− wd i  is the

same for the forward A→B and return B→A signals.
The clock formulae (16) and (18) are of fundamental im-

portance, since they indicate that only a clock which moves
relative to the EM wave carrier, v° = v – w ≠ 0, has a dilated
period τ > τo and retarded rate ν < νo, i.e., these effects are
the result of the clock’s interaction with the ether. A clock
with a velocity v = w in the inertial frame ΣΣ(w) has the
highest rate, ν = νo, corresponding to a clock at rest in the
ether, v° = 0.

The corresponding STR formula, ν ν= −o oc1 2 2vd i ,

which predicts that the clock frequency varies with the
velocity v relative to the observer, is the source of para-
doxes. E.g., for two identical clocks attached to two physi-
cally equivalent inertial frames ΣΣ and ΣΣ′ (relative velocity
u), the observer in ΣΣ claims that his clock has the highest
rate νo and the rate of the clock in ΣΣ′ is only

ν ν= −o oc1 2 2
1

2ud i . Whereas the observer in ΣΣ′ asserts that

his clock has the fastest rate νo, and the rate of the clock in ΣΣ

is only ν ν= −o oc1 2 2
1

2ud i . This contradiction is unresolv-

able, since the STR provides no means to decide which of
the identical clocks runs slower or faster. Such “paradoxes”
do not exist in G-covariant electrodynamics, since the
clocks in ΣΣ and ΣΣ′ have different velocities v1 2,

o  relative to

the ether, and therefore, run at different invariant rates by
Equation (18). E.g., the twin who moves faster relative to
the ether ages slower, whereas the twin who moves with a
lesser velocity relative to the ether ages at a faster rate.

Lorentz Force and EM Potentials

The force acting on a point charge e moving with an ar-
bitrary non-uniform velocity v(t) in an EM field E,B of the
inertial frame ΣΣ(r,t,w) with ether velocity w is, in G-covari-
ant electrodynamics

F = e(E + v × B) (22)

F = F′ = inv is G-invariant since E + v × B = inv and
e = inv in G-transformations ΣΣ ↔↔ ΣΣ′ (Wilhelm 1985a). A su-
perficial interpretation of Equation (22) might suggest that
this so-called Lorentz force is relative to the observer (STR),
since it appears to depend only on the charge velocity v(t)
relative to the observer of ΣΣ(r,t,w).

For the latter reason, Equation (22) is rewritten in a form
which reveals the absolute nature (ether effect) of the
Lorentz force relative to the vacuum substratum, namely

F = e[E + w × B + (v – w) × B] (23)

where

E + w × B = E° = inv (24)

B = B° = inv (25)

v – w = v° = inv (26)

are G-invariants (Wilhelm 1985a). Equations (23)–(26)
clearly show that the Lorentz force F = F° = inv is an ether
excitation, i.e., a force transferred onto the charge through
the vacuum substratum. F is not relative to the observer
(STR), since in Equation (23) v – w = v° = inv is the charge
velocity relative to the ether, and the remaining fields in
Equation (23) are ether excitations by Equations (24)–(25).

Similarly, the absolute nature (ether effect) of the
Lorentz force becomes obvious if we introduce the EM
potentials through E = –∇Φ – ∂A/∂t, B = ∇ × A. These
relations are G-invariant, since they can be rewritten in the
form (Wilhelm 1985a)

E w B w A w A+ × = −∇ − • − + • ∇
F
HG

I
KJΦb g ∂

∂t
(27)

B = ∇ × A (28)

where

ΦΦ – w • A = ΦΦ° = inv (29)

A = A° = inv (30)
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and

∇ = ∇° = inv,    
∂
∂

∂
∂t t

+ • ∇ =
°

w = inv (31)

in G-transformations (Wilhelm 1985a). Insertion of
Equations (27) and (28) into Equation (23) yields the
Lorentz force in terms of the EM potentials,

F w A w A v w A= −∇ − • − + • ∇
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KJ + − × ∇ ×
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L
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O
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t
∂
∂

b g (33)

since ∇(w • A) = w • ∇A + w × (∇ × A) and the ether
velocity w is uniform. By Equations (29)–(31), the G-invari-
ance of the Lorentz force is apparent in Equation (32),
whereas it is concealed in Equation (33). The representation
(32) again demonstrates that the Lorentz force is not rela-
tive to the observer (STR), but relative to the ether, since v –
 w = v° is the charge velocity relative to the substratum
frame ΣΣ°.

The above considerations also demonstrate that the
“generalized” electric field E + w × B = E° = inv has a
more fundamental meaning than the “ordinary” electric
field E ≠ E°, which is not invariant in G-transformations
[Equation (22)]. Since the Lorentz force is an ether
excitation, it has the same value in all inertial frames ΣΣ.
Without the vacuum substratum, the Lorentz force could
not exist, since the ether is the medium through which the
force F is transferred onto the charge e. The STR concept
according to which EM force fields exist in an empty
vacuum without EM field carrier reveals a lack of
understanding of elementary physics. Similarly, a force
interaction between the masses of the universe
(gravitation) would be impossible if the space between
them were the empty STR vacuum.

Velocity Dependence of EM Mass and
Momentum

A projectile moving in air generates a sonic wave field
with energy Us, the mass equivalent m U cs s o= 2  of which
is negligible (even at hypersonic speeds) in comparison
with the mass of this macroscopic body. On the other
hand, a charged particle such as an electron or proton
moving with a velocity v° in the vacuum substratum
excites an EM field in the substratum, the energy of which

increases like U co∝ − °
−

1 2 2
1

2vd i . The mass equivalent

m U co= 2 , even for a charge at rest in the ether, is large
enough to explain the rest masses of elementary charged
particles. For this reason, the EM mass of Lorentz and
Abraham cannot be ignored (STR), in particular since
elementary particles may be quasi-singular excitations of
the vacuum substratum.

Let ρo(r°) be the charge density field of an extended
charged particle of net charge e, when the latter is at rest in
the ether. If this particle moves with uniform velocity
v° = v° az

o  in the ether frame ΣΣ°(r°,t°,0), it has a space charge
field (Wilhelm 1990a)

ρ°(r°,t°) = γγρo(x°,y°,ζ°) (34)

where

ζ° = γγ(z° – v°t°),   γ = − °
−

1 2 2
1

2v cod i (35)

due to the contraction of the charge cloud in the direction
of charge motion v°, Equation (5). Equation (34) satisfies the
condition for uniform particle motion, (∂/∂t° + v° • ∇°)ρ°
= 0, and the constraint

ρ ρ ζ ζ° ° ° °= ° ° ° ° ° °=zzzzzz
−∞
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+∞

r r, , ,t x y x y eob g b gd d d d3
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Since ∂/∂t° = –v°∂/∂z° and dζ° = γdz°, the wave equation
for the scalar potential Φ°(r°,t°), which originates in the
particle charge density ρ°(r°,t°), reduces to the Poisson
equation (Wilhelm 1990a)
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by Equation (34). Hence, the electric potential of the
particle charge distribution moving with uniform velocity v
° is of the form

Φ°(r°,t°) = γΦo(x°,y°,ζ°) (38)

where Φo(r°) is the corresponding solution for the charge
distribution resting in ΣΣ°. By Equation (38), the electric field
components of the moving charge distribution ρ°(r°,t°) are
of the form

E
E
x,y

z

° ° ° = ° ° °
° ° = ° ° °°

r
r

, , ,
, , ,

,t E x y
t E x y

ox y

oz

b g b g
b g b g

γ ζ
γ ζ2

(39)

Equations (34), (38), and (39) constitute the self-similar solu-
tion with similarity variable ζ° = γ(z° – v°t°) for the ex-
tended charged particle in uniform motion with velocity v°
in the ether frame ΣΣ°(r°,t°,0). Note that the charge distribu-
tion ρo(r°) for the particle at rest in ΣΣ° is arbitrary.
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The momentum of the EM field of the moving charge is

p° = co
−2  E°zzz × H° d3r° where H° = εov° × E° in the ether

frame ΣΣ° (Wilhelm 1990a). Accordingly

p E v E r°= °× °× ° °−
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+∞zzzε οoc 2d i b gd3 (40)

or
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2 2, , , ,b g b g d d d

(41)

upon substitution of the self-similar solution (39). If we
make the plausible assumption that the charge distribution 
ρo(r°) of the particle at rest in ΣΣ° has spherical symmetry,
then its electric field Eo(r°) is spherically symmetric, too, and
Equation (41) becomes

p
v

v°= −
°F

HG
I
KJ

L
N
MM

O
Q
PP °

−
4
3

12

2

2

1
2U

c c
o

o o
(42)

where

Uo
o

o= ° °zzz
−∞

+∞ε
2

2E r rb g d3 (43)

is the electric field energy of the particle of charge density
ρo r°b g  at rest in the ether, ΣΣ°.

Thus, we arrive at the following formula for the mo-
mentum of the EM field of the extended charged particle
moving with uniform velocity v° in the ether frame
Σ° ° °r , ,t 0b g :

p° = m°(v°)v° (44)

where

m
m

c

o

o

° ° =
− °FH IK

v
v

b g
1

2
2

1
2

(45)

m
U
co

o

o
=

4
3 2 (46)

is the EM mass of the charged particle moving resp. at rest
in the ether. The factor 4

3  of the rest mass mo can be shown
to be 1 if stresses holding the charge together are taken into
consideration (Fermi 1923). Furthermore, the EM field of
the magnetic moment (spin) of the moving particle has
been neglected for the sake of a brief derivation of the ve-
locity dependence of the EM mass in Equation (45).

Equations (44) and (45) are fundamental results, which
show that the EM momentum and the EM mass of a
charged particle are G-invariants:

p°(v°) = p(v – w) = inv (47)

m°(v°) = m(v – w) = inv (48)

since v – w = v° = inv is the particle velocity relative to the
vacuum substratum. Accordingly, p and m of a moving
charged particle have the same value for observers in all in-
ertial frames ΣΣ. Thus, p and m are absolute ether effects,
since the EM field of a moving charged particle is an excita-
tion of the ether.

For comparison, the corresponding STR formulae are

quoted, p = m(v)v and m m co ov vb g d i= −
−

1 2 2
1

2 ; these de-

pend on the particle velocity v relative to the observer (Σ).Σ).
The unsoundness of the STR mass and momentum con-
cepts is obvious, since they imply that p(v) and m(v) vary
with the velocity v relative to the observer, i.e., vary with
the velocity of the observer, who does not interact with the
particle. E.g., two STR observers moving with velocities v1
and v2 in the ether frame ΣΣ° would “measure” the mass mo

of an electron at rest in the ether (v = 0) to be m1 ≠ mo and
m2 ≠ mo, where m1 ≠ m2 since v1 ≠ v2. This example illus-
trates how the STR destroys the physical mass concept of a
real particle mo, and replaces it by different imagined quanti-
ties m1 ≠ m2 of observers guided by the relativity prejudice.

Energy and Mass at High Velocities

The mass-energy equivalence Eo = m cο ο
2 , where Eo is

energy in any form including EM energy, can be derived
without recourse to STR space-time concepts (Lewis 1908).
In G-covariant electrodynamics, we start with the invariant
formula (45) for the velocity dependent mass of a high-ve-
locity particle in the form

m
c

m
o

o
2

2

2
21− °F

HG
I
KJ =v

(49)

where

m = m(v°) = inv (50)

by Equation (45) has the same value in all inertial observa-
tion frames ΣΣ. The differential of Equation (49) is

v°2dm + mv° • dv° = co
2 dm (51)

Since the mass m(v°) of a particle at high energies depends
on the particle velocity v° relative to the ether frame ΣΣ°, the
kinetic energy of a particle has to be defined by

K = K(v°) (52)
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K has the same value in all inertial frames ΣΣ, since v° = v –
 w = inv. K is also derivable from the work integral

K
t

t=
°

°
• ° °= ° °

°z d m
d

d d d
v

s s v
v b g

,
0

(53)

where ds° = ds = inv is the path element of the particle in
the ether frame ΣΣ° or any other frame ΣΣ. Accordingly,

K m m= ° + °• °
°z v v v

v
2

0

d dd i (54)

Substitution of Equation (51) yields the fundamental
kinetic energy-mass formulae for high-velocity particles:

K mc m co o o= −2 2 (55)

or

K m c
co o

o
= −

°F
HG

I
KJ −
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N
MM
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PP

−
2

2

21 1
1

2v
(56)

or

K E mco o+ = 2 (57)

where

E m co o o= 2 (58)

Equation (55) determines the kinetic energy K(v°) of
high energy particles with velocity-dependent mass m(v°)
in Galilean physics. Equation (58) indicates that (i) a mass
mo, which is at rest in the ether (ΣΣ°), is equivalent to an en-
ergy E m co o o= 2  in any form, and (ii) an energy Eo in any

form has an equivalent mass m E co o o= 2 .
Note that K ≅ ½mov°2 for v° << co by Equation (56), i.e.,

K does not reduce to the classical kinetic energy
Kcl = ½mov2 at low velocities v of the body in the frame of
observation ΣΣ. However, K ≈ ½mov2 equals the classical ex-
pression for w << v << co. The novel definition of
kinetic energy K in Equation (52) is the most natural and
general one, for the following reasons. A body at rest in an
observation frame ΣΣ ≠ ΣΣ° has kinetic energy relative to
absolute space, ΣΣ°. In order to provide this body with ki-
netic energy in the observation frame ΣΣ, the body has to be
accelerated against the gravitational forces of all masses of
the universe. This process leads exactly to the proposed
kinetic energy formula K = K(v°), i.e., a G-invariant kinetic
energy involving the body velocity relative to absolute
space. In terrestrial (quasi-inertial) frames, the acceleration
of bodies is frequently calculated under sole consideration
of the gravitational field of the Earth. This approximation to
dynamics is insufficient for the explanation of many geo-

physical phenomena, e.g., the tides, which require consid-
eration of the gravitational force field of the Moon.

A rethinking of high-velocity particle dynamics is al-
ready demanded by the physical impossibilities of the rela-

tivistic mass formula m m co o= −1 2 2
1

2vd i . E.g., consider

two identical particles with “proper” mass mo, which are at
rest in two inertial frames ΣΣ and ΣΣ' with (constant) relative
velocity u. The observer in ΣΣ will claim that his particle has
the smallest mass mo and that the particle in ΣΣ′ has a larger

mass m m co o= −1 2 2
1

2ud i . Whereas the observer in ΣΣ′

will claim that his particle has the smallest mass mo and that

the particle in ΣΣ has a larger mass ′ = −m m co o1 2 2
1

2ud i . It

is quite obvious that the mass of particles is not to be de-
termined by the particle velocity +v relative to the ob-
server, or by the velocity –v of the observer relative to the
particle. After all, the observer does not interact with the
particle and can, therefore, not affect the particle mass.
However, the mass of a particle can change in the vacuum
if the particle interacts, as a result of its motion, with the
ether matter concealed in the vacuum, as shown by
Galilean electrodynamics. Another relativistic fallacy is the
belief that a microscopic particle, no matter how large its
velocity v is relative to the Earth, has the “proper” mass mo

in a frame comoving with it. This prediction is not confir-
mable by experiment.

Galilean Measuring Process

Since the length = − −o oc1 2 2
1

2

v wb g  of a

measuring rod and the rate ν ν= − −o oc1 2 2
1

2

v wb g  of a

measuring clock are invariants (same value for observers in
all inertial frames), the measurement of length (∆z) or time
(∆t) intervals appears to be simple in Galilean physics.
However, in comparing experimental results with the pre-
sented equations of high-velocity electrodynamics, we
must take into consideration that the quantities ∆zm > ∆z
and ∆tm < ∆t measured (m) by means of standard rods and
clocks in an inertial frame ΣΣ(r,t,w) with ether flow w are not
the true measures (∆z, ∆t), since the measuring rods are
contracted and the measuring clocks are retarded in ΣΣ.
Accordingly, if measuring rods and clocks, moving with a
velocity v in the frame of observation ΣΣ are used, the
following corrections have to be made in order to obtain
the true measures (∆z, ∆t) from the measured length and
time values (∆zm, ∆tm):

∆ ∆ ∆z z
c

zm
o

= −
−L

NMM
O
QPP

= °1
2

2

1
2

v wb g
inv = (59)
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∆
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2

v wb g
inv = (60)

Note that the z-axis of the observation frame ΣΣ(r,t,w) is, in
the direction of length contraction, v – w = v° = inv (∆xm
= ∆x, ∆ym = ∆y). The units of length (meter = m) and time
(second = s) would have to be defined by means of a
“standard rod” and “standard clock” at rest in the ether
frame ΣΣ°(r°,t°,0). Exact copies of these length and time stan-
dards could then be employed as measuring instruments
in arbitrary inertial frames ΣΣ(r,t,w).

As a first illustration of the required corrections of the
measured values, consider a rod of true length ∆z° = l m
and a clock of true period ∆t° = 1 s at rest in the ether frame 
ΣΣ°(r°,t°,0). When these instruments are moved to an inertial
frame ΣΣ(r,t,w) with ether flow w and compared there with
a standard rod and a standard clock, the ratios of the true to
measured (m) values are (correction factors)

∆
∆

z
z cm o

= −
F
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I
KJ <

+

1 1
2

2

1
2w

(61)

∆
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t
t cm o

= −
F
HG

I
KJ >

−

1 1
2

2

1
2w

(62)

In these relations, v = 0 since the measuring standards and
the objects measured are at rest in the frame of observation 
ΣΣ.

Another example is the measurement of the 2-way ve-
locity of light in an inertial frame ΣΣ(r,t,w) with ether veloc-
ity w by means of a stationary clock at “O” and a stationary
mirror at “M”, where O and M are fixed positions on an
optical table which are connected through an optical tube
(light path) containing vacuum as depicted in Figure 2.
Since ΣΣ moves with a velocity u relative to the ether frame 
ΣΣ°, the ether streams with a velocity w = –u in ΣΣ, i.e.,
through the optical tube OM and table, and the measuring
instruments (Figure 2).

Laying standard rods end to end with the optical tube
OM, the distance OM is measured as ∆zm “m”. Due to
length contraction of the measuring rods in ΣΣ, the true
distance OM is in ΣΣ

∆ ∆z z
cm

o
= −

F
HG

I
KJ

+

1
2

2

1
2w

(63)

Using the standard clock at O, the travel time for both the
forward light signal, O→M, and the return light signal, M
→O, is measured as ∆tm “s”. Due to retardation of the
measuring clock, the true travel time is in ΣΣ

∆ ∆t t
cm

o
= −

F
HG

I
KJ

−

1
2

2

1
2w

(64)

If the experiment were conducted with the same setup
in the ether frame ΣΣ° (isotropic light propagation), the ve-
locity of light could be determined by means of the formula
co = 2∆z°/∆t°, since the light signal is a disturbance of the
light carrier. In the inertial frame ΣΣ(r,t,w) under considera-
tion, the 1-way velocities for signal propagation O→M
upstream (→) and M→O downstream (←) relative to the
ether flow w in the tube OM are (Figure 2)

c
z

t
ο − = →w

∆

∆
(65)

c
z

t
ο + = ←w

∆

∆
(66)

These 1-way light velocities are not determined since the

travel times for the forward signal, ∆t
→

, and the return sig-

nal, ∆t
←

, cannot be measured individually by means of one
clock only. The total travel time for the forward and return
signals measurable by the clock at O is

∆
∆ ∆ ∆

t
z

c
z

c
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co o o

=
−

+
+

=
−w w wb g b g d i

2
2 2

ο (67)

Substitution of the true experimental measures from
Equations (63) and (64) into Equation (67) gives for the
measurement of the 2-way velocity of light in ΣΣ:

c
z
to

m

m
=

2∆
∆

(68)

This surprising result indicates that the 2-way velocity of
light, in an inertial frame ΣΣ with ether flow w, can be di-
rectly obtained from the measured values ∆zm and ∆tm,
without any corrections whatsoever. Equation (68) is rigor-
ously valid, since the length contraction and time dilation

Figure 2. Inertial frame ΣΣ (with fixed optical tube OM, clock at O, mirror
at M, and ether velocity w) moving with velocity u = –w relative to the
substratum.
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effects produced by the ether flow w have canceled out!
Michelson and Morley conceived this formula
“instinctively”, and thus correctly measured the 2-way
velocity of light (Michelson and Morley 1887).

To this date, the STR supporters have shown that they
do not understood the physics behind Equation (68), since
they misinterpret it in a trivial way by concluding that
there can be no anisotropic light propagation c→  = co – w
and c←  = co + w in ΣΣ and, therefore, no ether or EM wave
carrier, w ≡ 0. This conclusion is not only a physical mis-
take, but an obvious logical blunder, as well. Quite gener-
ally, from the non-observation of an effect in one particular
experiment one cannot conclude that the effect does not
exist. Rather, it would in general require an infinite number
of (all possible) experiments to prove that the effect does
not exist.

Conclusions

The deductions presented here are based on G-covari-
ant electrodynamics, i.e., on concepts of absolute space and
time (meaning independent of the observer). Since the 3-
dimensional space {x,y,z} and the 1-dimensional time-line
{t} are infinite, real space and real time cannot be con-
tracted and dilated, respectively, relative to the observer
(STR) or relative to the ether. Maxwell’s theory and its G-
covariant generalization (Wilhelm 1984, 1985a) are Eulerian
field theories, in which the spatial coordinates r = (x,y,z)
and time coordinate t are independent variables, i.e.,
∂ ∂r t = 0 and ∂ ∂t r = 0. The relativity principle,
according to which one and the same (spherical) vacuum
light signal propagates not only in the inertial frame ΣΣ
(r,t,w) of its source but in all conceivable (∞3) inertial frames 
ΣΣ′(r′,t′,w′) with the same velocity co (imagine this!) is
represented in the STR through the invariants (Minkowski
1909)

x y z c t x y z c to o
2 2 2 2 2 2 2 2 2 20+ + − = = ′ + ′ + ′ − ′ (69)

which are connected through zero (0, usually not pointed
out). Equation (69) led Minkowski (1909) to the prediction,
“henceforth space by itself, and time by itself, are doomed
to fade away into mere shadows, and only a union of both
shall have an independent existence”, and the STR propo-
nents of our times seek the grand-design of “four-dimen-
sional space” and “world space” (Minkowski 1909; Alfvén
1977). In reality, these novel “space-time” concepts are
based on a confusion of the Lagrangian coordinates ξ tb g ,

η tb g , ζ(t) and ξ′(t′), η′(t′), ζ′(t′) of the spherical wave fronts

of the light signals in ΣΣ(r,t,w) and ΣΣ′(r′,t′,w′) with the Eule-
rian space variables x,y,z and x′,y′,z′. Accordingly, the STR
assertion of the interrelation of space and time has no

physical meaning and, hence, no bearing on physics
(Alfvén 1977).

Another physical controversy is the STR assertion that
rod lengths, clock rates, and mass of high-velocity particles
are relative to the observer, i.e., depend on the velocity of
the observer relative to these sytems, too. If this were true,
observers who move with different velocities relative to an
arbitrary reference point would “measure” different physi-
cal states of the universe, without interacting with the lat-
ter. Thus, the relativistic subjectivism leads to a denial of
physical reality, which is replaced by the chaos of the con-
tradicting perspectives of the STR observers.

Einstein correctly criticized the Copenhagen interpreta-
tion (also questioned by Wilhelm (1970)) of quantum me-
chanics through the polemics, “When a mouse stares at the
universe, does this change the state of the universe?”
However, it appears that Einstein never saw the “mouse”
in his STR, since he failed to ask the obvious questions:
When an “observing” mouse travels with half the velocity
of light, v = ½co, through the universe, does this change
the physical state of the universe and contract the radii of
the galaxies? Where would the mouse obtain the immense
energy to change the physical state of the universe and to
contract (deformation work) the radii of the galaxies? It is
apparent that the relativistic perspectives of the observers
are not real effects and cannot be observed in experiments.

These general comments on the physical irrelevance of
the STR are further substantiated by the specific physical
results presented, which are summarized as follows.

Nonrelativity of Space. A rod moving with a velocity v
in an arbitrary inertial frame ΣΣ(r,t,w), i.e., with a velocity v –
 w = v° = inv relative to the ether, experiences a length

contraction = − −o oc1 2 2
1

2

v wb g  = inv (same value for

all observers in inertial frames), as a result of its interaction
with the ether. The STR contraction relative to the observer
is physically untenable, as is space relative to the observer.
Hence, the relativistic space-time theory is a tautology
without real space.

Nonrelativity of Time. A clock moving with a velocity
v in an arbitrary inertial frame ΣΣ(r,t,w), i.e., with a velocity
v – w = v° = inv relative to the ether, experiences a rate

retardation ν ν= − −o oc1 2 2
1

2

v wb g  = inv (same value

for all observers in inertial frames), as a result of its
interaction with the ether. The STR clock rate retardation
relative to the observer is physically untenable, and a time
dilation relative to the observer does not exist. Hence, the
relativistic space-time theory is a tautology without real
time.

Nonrelativity of Mass. The mass of a charged particle
moving with a velocity v in an arbitrary inertial frame
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Σ r w, ,tb g , i.e., with a velocity v – w = v° = inv relative to

the ether, increases like m m co o= − −
−

1 2 2
1

2

v wb g  = inv

(same value for all observers in inertial frames), since the
energy of the EM field (ether excitation) of the charge in-

creases like U co∝ − −
−

1 2 2
1

2

v wb g  with increasing

charge velocity v – w relative to the ether. If elementary
particles are excitations of the vacuum substratum, this
mass concept for high velocity charged particles would
hold for neutral or uncharged particles, too.

Nonrelativity of Velocity. The Lorentz force of the EM
field acting on a charge e moving with a velocity v(t) in an
arbitrary inertial frame ΣΣ(r,t,w) depends only on the veloc-
ity v – w = v° = inv of the charge relative to the ether.
Similarly, the EM interaction forces on two charges e1,2
moving with the velocities v1,2(t) in an arbitrary inertial
frame ΣΣ(r,t,w) do not depend on their relative velocity
v1(t) – v2(t) or their velocities v1,2(t) relative to the observer,

but on their absolute velocity v1,2(t) – w = v1 2,
° (t) = inv

relative to the ether (Wilhelm 1990b). As demonstrated,
length contraction of rods, rate retardation of clocks, and
charged particle mass are G-invariants, which depend only
on the respective object velocity v – w = v° = inv relative
to the ether (v = object velocity in ΣΣ). Accordingly, these
physical velocities have absolute meaning relative to the
ether, i.e., they are not relative to the observer.

The effects of high particle velocities are important for
velocities v > 10–1co. The G-invariant formulae for (5) rod
length, (18) clock rate, and (45) particle mass reduce, in
quasi-ether frames (negligible w), to:
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These approximations are the corresponding STR relations,
which hold exactly in the ether frame, w = 0. Equations
(70)–(72) explain why the STR gives approximately correct
results on the Earth (quasi-ether frame), where particle
velocities v > 10–1co relative to the observer are practi-
cally the particle velocities relative to the ether, too, since
v – w ≅ v for w << v.

By Equations (23), (44), and (47), the equation of motion
of a particle of rest mass mo (in the ether), charge e, and ve-
locity v(t) in an EM field E,B is, in an arbitrary inertial frame 
ΣΣ(r,t,w):

d -

d

m

t
e

v w
E w B v w B

b g b g= + × + − × (73)

This fundamental equation is G-invariant, since v(t) –
 w = v°(t°) = inv, E + w × B = E° = inv, B = B° = inv, and
d[v(t) – w]/dt = dv°(t°)/dt° = inv. The corresponding
relativistic equation holds exactly for w = 0 (ether frame)
and approximately for w << v(t) (quasi-ether frames).

This investigation completes the work initiated by
Fitzgerald and Larmor (Whittaker 1954), which has been
interrupted since 1905.
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