The Equivalence Principle as a
Consequence of the Third Law

D. F. Roscoe

Department of Applied Mathematics
University of Sheffield

Sheffield S10 2TN, UK

Fax: 742-739826, Email: D.Roscoe@uk.ac.shef.pa

Introduction

One of the enduring mysteries of classical and modern
physics arises from the fact that the value obtained for the
gravitational-mass ratio of two particles compared in a
weighing experiment is identical to the value obtained for
the inertial-mass ratio of the same two particles compared
in a collision experiment (to within experimental error). For
this reason we speak of the equivalence between inertial
and gravitational mass, and tend to use the concepts inter-
changeably. However, whilst practitioners of science and
engineering have been content to accept this equivalence as
a matter of fact, there has, until recently, been no rational
understanding of it. However, recently, Ghosh, Assis and I
have each given the basis for such an understanding.

By treating the Universe as composed of an homogene-
ous part + a non-homogeneous part, Assis, and Ghosh by
similar arguments, have argued that inertial effects in a

body arise from the gravitational influence of the homoge-
neous part of the Universe acting on the body, whilst the
manifest gravitational effects arise from the non-homoge-
neous part of the Universe acting on the body. Thus, by
assuming a particular (Galilean invariant) theory of gravi-
tation as given, Assis and Ghosh are able to arrive at the
Equivalence Principle for Galilean invariant definitions of
mass. One can imagine that the basic ideas used in these
analyses could be extended, by choice of an appropriate
theory of gravitation, to cover the Equivalence Principle for
Lorentz invariant definitions of mass.

By contrast, I have effectively established a rational
foundation for the Equivalence Principle in the reverse way
by showing how, by treating inertia as given, it is possible
to arrive at gravitation; specifically, by assuming the con-
servation of three-momentum (Galilean inertia), it is possi-
ble to arrive at a Galilean invariant theory of gravitation,
whilst by assuming the conservation of four-momentum
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(Lorentzian inertia), it is possible to arrive at a Lorentzian
invariant theory of gravitation.

However, both of these approaches to establishing a
rational foundation for the Equivalence Principle are diffi-
cult to absorb and so, in the following, we present a. simple
Newtonian analysis which can equally well be said to
provide such a foundation. Specifically, we show that an
appropriate consideration of the general nature of
Newtonian instantaneous action-at-a-distance shows us
that the gravitational-mass ratio of two particles deter-
mined in a weighing experiment can be interpreted directly
as the inertial-mass ratio of the same two particles deter-
mined in a particular kind of ‘at-a-distance collision experi-
ment’.

A Newtonian analysis

A common formulation of Newton’s Third Law states
“for every action there is an equal and opposite reaction’ and
so, for two particles in collision (observed from an inertial
frame) we necessarily have

mAv = ~MAV

wherem, Maretherespectiveinertial massesand Av,AVare
therespective velocity changes through the collision. How-
ever, this formal rendering of the Third Law for a two-
particle system is specific to the case of collision, in which
interaction occurs throughdirect contact. Now, the various
phenomena of gravitationand electromagnetisminformus
we must admit the notion of a more general case in which
theinteractionbetween twoparticlescanbe characterized as
being continual, and ‘at-a-distance’. In this case, the forego-
ing formal statement which summarizes the case of ‘colli-
sion” is inadequate, and must be generalized to become

mx=+G(t); MX=-G(t) (1)
where G(t) can be, interpreted as the programme of
Newtonian forces exerted on each particle in the system.
However, (1) by itself is not sufficient to express the full
meaning of the Third Law for the at-a-distance case since it
merely asserts the equality of the opposing forces, but
neglectstosay that these forcesactinthesamestraightline—
a condition which is generally taken to be implied in any
statement of the Third Law. This condition of colinearity
can be expressed as

x—X=AG(t) (2)
where Ais an unknown Galilean scalar.

If we now note from (1) that X = G/m and X= -G/M
then we find

X=X = (’"mLM )G(t)

If we now write Y = (x—X) then G(t) can be eliminated
between this latter statement and (2) to obtain

mM
m+M )Y ®)

Y=
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Now consider, the general nature of a procedure which is
required to compare two test masses, m; and m,, for
equality only, via measurements made on their respective
interactions with the mass M, which occur according to (3).
Suppose these latter measurements are made simultane-
ously and in the same location—implying Y and A are
identical for both cases—and suppose they simply consist
of instantaneous measurements of the two relative accel-
erationvectors, denoted as Y, and Y, respectively. Foreach
set of measurements we obtain, by taking the inner-prod-
uct of (3) with itself, the scalar equations

2
Yy = g M )y
m,+M
2
Y'Y= /12[ m,M ) v,
m,+M

where superscript “T” denotes ‘vector transpose’, and it
follows immediately that

m \(m,+M)_ |Y]Y,
m, \ m, +M Y'Y,

Itis clear from this latter expression that m,, and m, can
only be equal when the magnitudes of the two relative
acceleration vectors are also equal. In this general way, it
can be seen how Newtonian action-at-a-distance can be
used to calibrate the relative inertial masses of particles,
and how—significantly—the processisindependent of the
specific form of 2 which defines the quantitative nature of
the action; that is, the process could be electromagnetic,
gravitational, or anything else one cares to imagine.

Newton’sLaw of Universal Gravitationcannow be seen
as simply a special case which starts with the assumption
that M (say)issolarge compared tomthat, by (1), x >> X = 0
with the consequence X can be considered fixed in some
subclass of ‘inertial frames; consequently, relative to those
particular frames in this subclass for which X =0, (3)
becomes x = AmxX. Consistency with Kepler’s Laws is then
obtained if A = —4,[x|’, where 4, is an appropriately deter-
mined positive constant. With this perspective of Newtonian
gravitation, we can see how the process described above to
test for equality between inertial masses ina Newtonianat-
a-distance interaction defines the essential features of the
classical pan-scale weighing experiment. In other words,
relativemasses determined inweighing experimentscanbe
interpreted simply as measures of relative inertial masses
determined in at-a-distance ‘collision” experiments, and
Newtonian gravitation can be interpreted as simply a
special case of an ‘at-a-distance inertial interaction’.

This qualitative approach to understanding the nature
of Newtonian gravitation leads very quickly to a parallel
understanding of the ‘potential energy’ conceptwhicharises
in the Newtonian prescription: Consider a binary inertial
interaction, described from a frame which is at rest with
respect to the system’s centre of gravity, and suppose the




particles concerned have masses and velocities
(m,v), (M, V). Then we have:

mo+MV =0
from which it follows

%mv-z):(MJ%MV‘V,
m

so that, using (KE) and (KE),, to denote the respective
kinetic energies, we finally obtain

(KE), - 24 JkE,) =0

m

The important thing to remember is that, since this rela-
tionship follows directly from the Third Law, it must be true
for any Newtonian binary relationship, including, specifi-
cally, a classical Newtonian gravitating pair for which M
>>m.Insuchacase, misthemass of the gravitating particle,
and M is the mass of the ‘gravitational source’. The kinetic
energy/potential energy relationship for the gravitating
particle in such a system, given, of course, by
(KE), +(PE), =0, is, like (4), only true in that class of
frames which is at rest with respect to the system’s centre
of gravity; consequently, it can be compared directly with
(4), with the result

(PE), = —(%

)(KE)M.

That is, the potential energy of a gravitating mass i
proportional to the negative kinetic energy of the source
mass, and this conclusion isbased purely on the physics o
momentum conservation. In other words, the Newtoniar
concept of ‘potential energy” is simply a modelling device
which, in cases for which M >> m, allows the dynamica
behaviour of the gravitating source to be ignored.

Apart from providing Newtonian gravitation with ar
inertial context, and thereby already eliminating the neec
for the equivalence principle, this simple analysis remind
us of the essentially approximate nature of the invers:
squarelaw (thatis, the sourceisassumed tobeinaninertia
frame) as a description of a Galilean-invariant gravitatior
theory and, correspondingly, suggests the existence of
general Galilean-invariant gravitation theory which ac
countsalso for the inertial motions of gravitational sources
The Assis and Ghosh theories, being based on Weber’
Law, which is truly relativistic in the sense of being appli
cable in all frames, are of this type.
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